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1.0  Introduction  
The purpose of this white paper is to provide an introductory reference for industry and 
academic practitioners interested in exploring the use of synchrophasors and other time-
synchronized measurements for supporting power distribution system planning, operation, and 
research.  

The mission of the North American Synchrophasor Initiative’s Distribution Task Team (DisTT) is 
to foster the use and development of capabilities of networked phasor measurement units 
(PMUs) and other time-synchronized monitoring devices at the utility distribution level, beyond 
the substation. This group shares information in support of effective research, development 
and deployment of distribution PMUs and their applications. In doing so, it aims to create a 
community for solving technical and other challenges specific to distribution PMU technology 
and context.  

These activities are motivated by the belief that effective measurement and analytics for the 
electric grid, including the distribution level, represent an important enabling technology for 
electric power quality, reliability, grid resilience, and sustainability – especially given the 
growing significance of diverse and renewable resources. 

Significant changes are occurring at the periphery of the grid – more distributed generation and 
storage on customer premises, more customer-initiated demand response, electric vehicles and 
other changing customer load characteristics -- that necessitate better situational awareness 
and insight into distribution system conditions and performance.  Although power distribution 
systems have not been highly instrumented in the past, there is growing interest in applying 
PMU-like technology at the distribution level. 

PMUs take time-synchronized measurements of voltage, current and frequency that can tell 
grid operators what is happening, where, and when. Their precision in physical measurement, 
time resolution, and the ability to cross-reference locations affords a deeper insight into 
physical power flows than conventional sensor data. Operators and planners can use this 
information to manage the new level of variability, uncertainty, and opportunity in the modern 
grid.  

This White Paper aims to summarize key issues in distribution synchrophasor technology, 
convey a sense of the broad spectrum of applications, and provide a foundation for defining 
and prioritizing the needs for continuing research and development in this area. 

The paper first articulates the premise for the idea of deploying synchrophasor networks in 
distribution systems, while recognizing the inherent difficulties. Section 2 provides a glossary of 
basic synchrophasor terms as a quick introduction for readers unfamiliar with the technology. 
Section 3 highlights a set of selected applications and use cases for synchronized measurements 
in distribution systems. Section 4 then delves into some of the details of implementing 
synchrophasor networks such as device placement, data quality, and data management.  

Appendix A offers a more rigorous introduction to the mathematics of synchrophasor quantities 
and measurement errors, intended as a foundation for future discussions of PMU device 
performance and data quality.  
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Appendix B lists distribution synchrophasor installations and research projects known to the 
authors at the time of this writing. 

1.1  Premise of Distribution PMUs 
Historically, electric grid planners and operators had limited information for understanding the 
status and behavior of the electric grid. Available information included measurements from 
supervisory control and data acquisition (SCADA) systems, typically available at several-second 
intervals from substations, and model data based on equipment ratings and specifications. The 
physical state variables of the a.c. network – specifically, the complex voltages, or time-shifted 
voltage waveforms at every node – were not directly observable, but could be estimated 
through these models. This solution worked well enough for many years. But given the growing 
uncertainties and complexities in grid planning and operations, these methods are increasingly 
becoming inadequate in time resolution, precision, accuracy and scope.  

Transmission planners and operators were first to recognize the need for new tools that rely on 
advanced sensors and more comprehensive monitoring to better observe, understand and 
manage the grid. The challenge in transmission systems was comparing measurements across 
long distances (hundreds of miles) that would reveal physical interactions such as oscillations 
between generators, and be able to describe power flows and stability across an entire 
synchronous a.c. network. By comparison, distribution systems were simple and posed little 
need to observe their operation with much granularity in space or time.      

But with the rapid growth in deployment of distributed energy resources, two-way electricity 
flows and new customer devices such as electric vehicles, there is a growing interest in sharper 
observation tools for the distribution grid. The possibility of new interactions among new and 
legacy devices, along with opportunities for more active and intelligent control, delivers value 
from measurements that are both precise and time-synchronized, making electrical events and 
responses observable and comparable between locations.   

A high-value grid monitoring system will possess several characteristics: 

• A high degree of time granularity, on the order of a sample per cycle, compared to 
current SCADA and EMS, which provide samples every few seconds; 

• Fast communications access for real-time streaming of data for system recovery 
following disturbances; 

• High-resolution data for off-line engineering analysis, and preferably in near real-time 
to enable operation support analytics; 

• Deployment of a large number of measurement devices across the system, which 
implies both low-cost devices and easy installation; 

• Precise time synchronization of measured data to enable comparison across many 
electrical locations on the grid; 

• Data quality, availability and volume that are appropriate to serve the high-priority uses 
and monitoring needs of operational and planning tools. 
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1.2  What’s new? Synchrophasor technology 
Synchrophasor technology, using phasor measurement units (PMUs) offers all of the above 
characteristics.  An individual PMU measures grid conditions at high speeds at a specific 
location and gives each measurement a precise time-stamp; a network of PMUs sharing data 
through a phasor data concentrator (PDC) or other aggregating platform enables the calculation 
of time-synchronized voltage and/or current magnitudes and phase angles (known as 
synchrophasors). There are substantial differences between PMU instruments suitable for use 
in transmission and in distribution systems, but their strategic significance is similar in that they 
both offer unprecedented situational awareness. 

Precise synchronization makes it possible to directly observe the time shift in the voltage or 
current waveform as measured at different locations, which is a small fraction of a 60-Hz cycle. 
The voltage phase angle difference δ is a state variable, along with voltage magnitude, that can 
be thought of as physically driving a.c. power across a circuit or network. The ability to measure 
phase angle changes at multiple locations allows grid operators to detect and characterize grid 
behaviors such as oscillations that could not be observed by traditional lower-speed state 
estimation and monitoring systems, or even by dedicated, single-location modern high 
resolution measurements such as power quality monitoring. Until the advent of synchrophasor 
networks, grid situational awareness was limited by the relatively low precision of modeling 
estimates, the strictly local character of higher resolution measurements, and the lack of a 
precise time stamp on measurement data.  

Once a PMU network is deployed for the purpose of detecting specific grid behaviors, the same 
network can be used to monitor traditional quantities, perhaps at greater resolution, and at 
little additional cost. Comprehensive real-time monitoring enables grid operators to observe 
and react to any significant change in the grid, such as electric power events at generators or 
customer facilities, and to archive those events for later analysis (as for forensic purposes or 
pattern identification) and training. Once the PMU archive has been created, users can apply a 
variety of analytic tools on those data, discovering new insights from old data as analytic 
capabilities evolve.  

Synchrophasor capability may be built into devices such as relays or digital fault recorders 
(DFRs), and many PMUs that could be considered within the distribution realm are embedded 
in digital relays at distribution substations. The most prominent PMU used beyond the 
substation level today is called the micro-PMU (µPMU). In the future, PMU and networking 
capability may be embedded in devices such as inverters, transformers, etc.  

Traditional electric monitoring systems used dedicated sensors to monitor specific grid 
conditions at specific locations for specific applications or uses. In contrast, the synchrophasor 
network monitoring approach collects a wide set of compatible grid condition data from many 
locations, for a broad and evolving set of uses. When only a small number of locations need 
monitoring, it is probably less expensive to use functionally-dedicated measurement tools in a 
few precise locations. But as there are many event locations of interest, and the use cases may 
expand over time, it is probably more cost-effective to use a PMU-like data collection system 
that can support multiple applications. If a PMU network is warranted for managing unknowns 
of high uncertainty, especially as the penetration of distributed resources increases, that 
crossover should come relatively quickly.  
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1.3  Why bother? High-value uses for distribution monitoring 
A substantial fraction of electric utilities’ financial and capital assets are spent on distribution 
networks.  Despite good design, installation, operation and maintenance efforts, well over 90% 
of customers’ electric outages occur due to problems occurring on the distribution system 
(rather than from transmission- or generation-level problems).  Yet many North American 
utilities have limited amounts of monitoring on their distribution systems. Typically, there are 
some SCADA devices on subtransmission elements, and a growing number of advanced meter 
deployments that provide 15-minute power or energy readings (although often with delayed 
data delivery).   

It is difficult to know what is happening on the distribution system without monitoring and 
measuring distribution-level and grid-edge activity.  Distribution system managers could use 
high-quality, high-speed, wide-scale distribution-level monitoring – as feasible from a 
distribution-tailored synchrophasor network – planners and operators could use the data and 
appropriate analytical tools for many purposes, including: 

• State or condition monitoring of the distribution system; 
• Monitoring and analysis of customer-owned, behind-the-meter distributed generation 

and energy storage devices, enabling better forecasting and integration of those 
devices; 

• Measurement and verification of customers’ energy efficiency, demand response and 
load management activities (subject to appropriate privacy protections); 

• Monitoring and analysis of significant end-user loads (for example, clusters of electric 
vehicle chargers); 

• Identification of asset and equipment problems, including detection and advance 
warning of equipment operational issues and failures; 

• Fault detection (including high-impedance faults), location and event forensics; 
• Anomaly detection, including potential cyber-intrusions; 
• Detection of previously unknown dynamic events (for example, control instabilities or 

oscillations) that are not recognizable with traditional monitoring. 
 

Many or all of these capabilities can be used to cost-effectively improve distribution system 
design and operation and ultimately improve delivered reliability.   

1.4  Context for Distribution Sensing and Measurement 
Traditionally, grid operators and planners have had little in the way of explicit measurement 
information from primary and secondary distribution systems, between the substation and 
customer meters. They could largely get by with designing the system for the most extreme 
conditions – specifically, peak loads and faults – and then try to ensure that the grid operated 
within that expected range. The combination of radial topology, strictly one-way power flow 
out from the substation, and careful forecasts of customer load gave grid managers a 
reasonably good idea about the operating state of distribution circuits – i.e., voltages and 
currents between substation and customers – even without the benefit of empirical, real-time 
sensor data. Smart meters have added better information on customers' load demands and 
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energy use, but meter data are limited in terms of the variables recorded (e.g., they may not 
include voltage), time resolution (most of the advanced meters presently deployed measure 
usage every 15 minutes), and latency (most systems do not collect smart meter data in real 
time).  

The rapid growth of distributed energy resources (especially rooftop photovoltaic panels, but 
also other generation and energy storage) and high-demand loads (such as electric vehicles) has 
rendered the grid’s traditional design basis invalid. Specifically, we may no longer assume one-
way power flow, monotonic voltage profiles along distribution feeders, or net load currents 
that conform to a predictable pattern. For instance, customer load may be offset by solar 
generation behind the meter, and suddenly appear to spike when clouds pass, or when the PV 
inverter trips offline (as required) in response to a grid disturbance. In another example, 
batteries interconnected at the distribution level might participate in programs that aggregate 
output from multiple DERs for the purpose of providing transmission-level ancillary services 
(such as frequency regulation), and may charge and discharge without particular regard to their 
impact on the local distribution network. Since the distribution grid was not originally designed 
for two-way flow and interactions among diverse resources, there is a growing need to monitor 
the real-time performance, health and safety of distribution systems. 

Distribution-level PMUs (such as µPMUs) permit the direct and precise observation of the state 
variables for a.c. power flow, synchronizing those measurements across many different 
locations on the grid. 

This paper is tailored principally for the use of synchrophasor and other time-synchronized 
measurement systems on medium-voltage electric distribution systems. Section 2 below offers 
definitions of the measurement elements that a distribution-level synchrophasor system 
monitors (with additional technical detail included in Appendix A).  Section 3 reviews the 
current known uses for distribution-level PMU monitoring.  Section 4 reviews a number of 
technical considerations for distribution-level synchrophasor system design and use, including 
PMU placement, data quality, cybersecurity, and much more.  
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2.0  Brief Synchrophasor Definitions 

This glossary summarizes key terms used in this White Paper. Mathematical details, subtleties 
and theoretical limitations of synchrophasor measurements are presented in Appendix A. 

Synchrophasor A synchrophasor is the result of a time-synchronized measurement of a 
phasor quantity. (The word synchrophasor is sometimes used, 
improperly, for the device that performs the measurement.) 

Phasor A phasor is an abstract, idealized representation of an electrical quantity 
such as voltage or current that is assumed to vary in time according to a 
perfect sinusoidal wave of constant frequency. 

A phasor contains two pieces of information: magnitude and phase 
angle. By convention, the magnitude is the root-mean-square (rms) 
value, or average height of the wave. The phase angle in degrees 
expresses a time shift of the sine wave relative to a reference clock. 

The difference between voltage phase angles at different locations is 
closely related to power flow across the network. This difference can be 
observed only if the measurements share the same time reference, thus 
“synchro-”. By definition, a phasor describes an entire cycle of a wave, 
not an instantaneous physical value. 

Phasor 
measurement unit 
(PMU) 

A PMU is a device that reports synchrophasors.  
PMUs also report frequency and ROCOF. 

Frequency The a.c. frequency describes how many complete reversals voltage and 
current undergo per second. Ideally, it is constant at the nominal value of 
50.00 or 60.00 hertz (cycles per second).  
When frequency is not exactly constant, it is not trivial to define or 
measure.  

Rate of change of 
frequency (ROCOF) 

The rate of change of frequency, expressed in hertz per second, 
describes how rapidly the frequency is changing, indicating an imbalance 
between generation and load. 
In the ideal steady state, ROCOF would be zero.  
ROCOF is typically of interest during significant grid disturbances. 

Total vector error 
(TVE) 

TVE is a measure of the accuracy of a phasor that jointly accounts for 
errors in magnitude and angle. 
Existing PMU performance standards refer to a 1% TVE.  

Sample/Report A PMU takes many rapid physical measurements (samples) of voltage 
and/or current, computes phasor quantities from these samples, then 
time-stamps and reports the phasor for each cycle or two. The reporting 
rate is expressed in frames per second. 
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3.0  Distribution-Specific Applications and Use Cases 

3.1  Overview 
For synchrophasor applications of interest at the transmission level, algorithms typically 
compare measurements across large distances, even if the PMUs happen to be installed on 
distribution circuits—say, at substations, or plugged into 120-V wall outlets [1] [2]. Such 
analysis provides important insights for wide-area monitoring, including frequency and angle 
stability, grid oscillation modes and damping, or significant disturbance events [3] [4] [5] [6]. By 
contrast, distribution-specific applications will be primarily concerned with informing local 
decisions, usually comparing data from multiple locations behind the same distribution 
substation. For example, an algorithm may seek to determine the cause and effects of a fault 
on a distribution circuit based on voltage and current phasors along the feeder, while checking 
synchronized data from elsewhere to rule out a disturbance propagated from the transmission 
side. 

The goal of synchrophasor-based applications is always to provide increased visibility and 
situational awareness, which can extend both above and below the substation. However, on 
the transmission side, PMUs augment extensive telemetry already in place for purposes of 
power system measurements (voltage and current magnitudes, real and reactive power) in 
near real-time. The higher resolution and precise time synchronization of synchrophasors 
crucially improves upon these conventional measurements, by revealing subtle changes and 
dynamics across the time dimension. These dynamics are seen in the relationships among 
quantities over large distances across the network, for example, in the context of oscillations 
and their damping. Across transmission systems, time-aligned frequency measurements, even 
without explicit phasor differences, can be highly informative [5], supplementing SCADA and 
EMS systems that approximate steady-state conditions.  

By contrast, existing SCADA and customer meter data leave vast gaps of knowledge about 
distribution circuits, where even the physical properties and connectivity of the network itself 
are often in question. Many distribution system applications will need to first establish a 
baseline awareness of the distribution system’s operating state, in order to detect and 
understand anomalies and problems. The goal will be to identify grid impacts arising from 
specific individual sources and how those affect the rest of the distribution feeder and the 
upstream system. This is difficult because the relevant signals to be measured are small, 
distribution systems are noisier than transmission systems in terms of data behavior, and 
algorithms must account for many variables. Moreover, these variables include unknowns such 
as exact impedances of the primary and secondary distribution lines, ABC phase connectivity, or 
operational status of rooftop photovoltaic systems. 
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3.2  Distribution Applications, Measurements and Data Needs 
Many distribution-specific applications for synchrophasor (and more broadly, time-
synchronized) data are discussed in [7], including: 

o Event detection and classification 
 Voltage sage detection and analysis 
 Low- and high-impedance faults 
 Equipment health diagnostics 
 Fault location 

o Topology detection 
o Cyber-attack detection 
o Model validation 

 Load models 
 Generator models 
 Phase (ABC) identification 
 Line segment impedances 
 Transformer and other device models 

o DG characterization 
 Correlate feeder voltage changes with DG behavior 
 Detect reverse power flow 
 Disaggregate net metered DG from load 

o Microgrid operation 
 Islanding 
 Load and generation balance 
 Resynchronization 

o Distribution state estimation 
o Phasor-based control 

 

These applications vary substantially regarding their demands and requirements for PMU data. 
Specifically, they will have different needs for 

o Temporal data resolution 
o Absolute and relative measurement accuracy 
o Communication volume, latency and continuity of data transfer 
o Density and placement of PMUs. 

 

A table of expected data requirements by application is reprinted from [7]. The quantitative 
table entries are not intended as conclusive statements, but reflect approximate engineering 
judgments that will likely be updated and refined as R&D advances and as field experience with 
these applications grows. The primary take-away is that different applications draw upon 
different physical principles and therefore have different measurement requirements. 
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Table 1: Expected Data Requirements for Various Types of Distribution PMU Applications [7].  

Table 1 suggests that since some of the above tasks can be performed using measurements of 
lesser precision or resolution (and thus presumably lesser cost), it may be easier and more cost-
effective to deploy specialized devices for specific tasks (using a common data network) rather 
than using a large fleet of standard devices to collect data for all distribution application tasks.1   

For instance, a significant subset of applications to improve situational awareness of 
distribution systems (including event detection and real-time knowledge of loads and 

                                                      
 
1 There is a ready parallel to transmission-level PMUs, which include M-class and P-class devices to collect data for 
executing different tasks.  
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generation) do not rely on the explicit measurement of the voltage phase angle shift between 
locations. In that sense, they don’t need synchrophasors at all; they just need time-
synchronized measurements of rms magnitudes, with synchronization on the order of a full 
cycle rather than a fraction of a degree. This means three orders of magnitude less precision in 
the time stamp (i.e. milliseconds instead of microseconds), which would greatly simplify the 
apparatus.  

Also, numerous distribution utilities are investigating how much operationally relevant 
information can be leveraged from their advanced metering infrastructure (AMI) using smart 
meters of end-use customers. These approaches might involve some modification of firmware 
and data collection while working within the capabilities of the existing sensor and 
communication hardware.  

These examples speak to the value of measurements other than high-precision synchrophasors. 
However, they still rely on a coordinated network of sensors. Also, they are consistent with the 
philosophy that a single network can serve multiple uses as well as multiple users – for 
example, the billing, engineering, and operations departments within a utility. This suggests 
that the economy of system monitoring should be evaluated in a collective sense – that is, 
across the broadest set of supported applications – rather than in terms of individual, isolated 
use cases. The comparative cost of sophisticated sensor capabilities and crosscutting 
requirements such as installation, communications, data analytics, etc. remains a legitimate and 
important consideration. But there could be a false economy in designing a sensor and data 
infrastructure that precludes potentially valuable uses which are more demanding in data 
terms. As utilities know very well in the context of planning for load growth, a modest size 
increment in a capacity investment can have a large payoff if it avoids the need for additional 
investments a few years in the future. Likewise, it may be most cost-effective to build 
conservative ‘headroom’ into a sensing and data infrastructure at the outset.        

On the other hand, a risk of over-designing a monitoring network is producing an excess of 
information: too many sensors sending too much data, driven by the time resolution and 
number of channels on each sensor. This could be counterproductive or disruptive for some 
uses. If finding and extracting the actionable intelligence from a voluminous or awkward data 
store requires any additional time or effort of the user, then more information may be harmful 
rather than helpful. This risk is more a function of the data management infrastructure than the 
sensor technology involved.2 Any advanced grid data infrastructure should facilitate filtering 
and consuming the data at different resolutions and locations (i.e., near the sensor versus at 
some central location), as appropriate to the application purpose.  

The following sections illustrate a subset of applications in more detail. They are not intended 
to provide exhaustive coverage, but convey a sense of some important emerging use cases. 

                                                      
 
2 The Berkeley Tree Database (BTrDB) was developed to handle high-resolution time-series data from sensor 
networks specifically in light of this concern. 
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3.3  Event Detection, Classification and Cyber Attack Detection 
High resolution measurements on a fast and readily searchable database provide many new 
opportunities for detecting events that previously could not be diagnosed, located, or observed 
at all. For example, Figure 1 shows an event observed with µPMUs on a 12-kV distribution 
circuit. SCADA did not register the transient current, and reported the increased steady-state 
current with a 7-second error in the time stamp.   

 
Figure 1: µPMU (120 frames per sec) versus SCADA (2-sec) recordings of a transient event. (LBNL) 

Measurement synchronization is critical in order to identify a unique event and compare its 
magnitude as observed from different locations. As an example, Figures 2 and 3 illustrate an 
installation of three µPMUs on two distribution feeders, and a voltage disturbance event 
recorded by each µPMU. An event detection algorithm picked up the voltage sag at µPMU 3, 
where the magnitude dropped beyond a chosen threshold. Cross-referencing time stamped 
data from µPMUs 1 and 2 shows that while the event is recognizable at these locations, its per-
unit magnitude there was much smaller and did not trigger an event report. From these 
observations, the operator or automated algorithm can deduce that the cause of the event is 
most likely located on Feeder 2 (below µPMU 3), since a more distant disturbance propagating 
through the transmission grid would have registered more equally at the two feeders.  

Further analysis such as comparison of voltage and current measurements, or magnitude and 
angle data, can classify events as faults, abrupt changes in load or distributed generation, tap 
change operations, etc. The correlation, localization and classification of events with a set of 
data analytics based on µPMU measurements in the distribution grid is presented in [8]. 
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Figure 2: Schematic location of installed μPMUs on a 12-kV system, reprinted from [9]. 

 

 
Figure 3: Voltage magnitude change in per-unit observed at the three µPMUs in previous figure. (LBNL) 

Event detection and classification go hand in hand with cyber-attack detection. Cyber-attacks or 
attack rehearsals leave footprints in the physical measurements of the grid, though they may 
not cause obvious disruptions. For example, an attacker who hacked into a utility’s SCADA 
system might test his ability to remotely actuate switches by opening and closing a switch that 
does not interrupt any load or trigger any alarm. This type of rehearsal would normally go 
unnoticed, but careful analysis of synchrophasor data could reveal the switch operation, and an 
automated comparison against known operating actions could flag the event. Conversely, 
detected anomalies can have cyber-related causes (such as unauthorized manipulation of 
equipment) or natural causes that may pose safety risks (such as high-impedance faults). In 
either case, early detection is essential to avert potential safety or reliability problems.  

Early detection of cyber-intrusions is a crucial defensive strategy because even if an intrusion is 
not causing direct harm at present, it may be part of an attacker’s learning process and pave 
the way for more serious future disruptions. Cyber-attacks can also defy N-1 security criteria, by 
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compromising the redundancy in the grid that ordinarily limits the impact of any one element’s 
failure. By the time any serious physical consequences such as loss of load are noticed, it may 
be too late to intervene.  

To defend against cyber- and other threats with intelligence from the distribution system, an 
approach documented in [8] is to equip the grid with an event detector and classifier to first 
filter out anomalies, and then perform a forensic analysis of the likely source of the anomaly. 
This level of insight can be obtained by defining proper, searchable metrics as a function of 
synchrophasor readings. These metrics aim to capture specific characteristics that can be traced 
back to physical misuse of automation equipment, or data inconsistencies that indicate sensor 
malfunction or injection of falsified data. 

Localizing and classifying events draws on knowledge about the system topology, physical laws 
and the implemented automation of the grid to fuse the data and test the hypotheses of a 
cyber-attack or other external factors as the probable cause. Rules are applied at different 
levels of data aggregation and may include inspection for anomalies in the voltage magnitude 
as well as fast changes in the current magnitude, active and reactive power and local frequency. 
Because a signature of disturbance events is to take the grid out of steady-state operation, the 
rules also check for validity of the steady-state equations using single or multiple μPMUs. 

Figure 4 illustrates a hierarchical framework for analyzing grid data at different levels of 
aggregation. Next to each sensor, rules are applied to search for “anomalies” based on local 
readings only. Eventful data segments are annotated, stored, and prioritized for sending to 
higher levels of aggregation, where another set of rules correlate multiple sensor readings to 
identify a possible cyber-intrusion. An implementation of this architecture from [8] has each 
sensor “sandboxed” with a BeagleBoard; the database is hosted at 
http://powerdata.lbl.gov/explore.html. [10] 
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Figure 4: Implemented Hierarchical Intrusion Detection Architecture. (ASU) 

3.4  Distribution Network Topology Detection  
Topology detection algorithms help to determine the status of switches (open or closed) at 
known locations in the power system. Knowledge of the network topology is essential to 
maintain safe operations and estimate the system state accurately. The status of switches, and 
thus the network topology, is generally expected to be available through Supervisory Control 
And Data Acquisition (SCADA). In practice, however, switch status information may be sparse 
and outdated, because SCADA system poll instrumentation near these switches and the 
information is not synchronized. Although connectivity is not directly sensed by µPMUs, it can 
be inferred from phase angle differences between points on opposite sides of a switch. 

Several approaches to topology detection based on µPMU measurements are described in the 
literature. For example, [11] is a model-less approach based on time-series data from a dynamic 
system. These data show specific patterns regarding state transitions, such as opening or 
closing of switches, as a kind of signature from each topology change. The proposed algorithm 
in [12] compares the actual time-varying pattern of voltage phasor values to a library of 
patterns associated with possible topologies of a given distribution network. The work in [13] 
proposed a method to reconstruct the interconnectedness of distribution networks based on 
dynamically related stochastic processes. The model-based approach in [14] uses a voting-
based algorithm that looks for the minimal difference between measured and calculated 
voltage angle or voltage magnitude to indicate the actual topology. Theoretically it can be 
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shown that accurate topology estimation for radial distribution grids is possible with 
measurements of bus voltages limited to a sparse set. This is due to specific trends that the 
radial topology imposes on second-order voltage statistics, which enable the relative locations 
of distribution grid buses to be determined [15]. In sum, the problem of network topology 
detection with high-precision synchrophasor data is an active area of academic investigation, 
which has both intrinsic mathematical appeal and practical significance.  

A simpler but highly relevant case of topology detection is to recognize when a conductor is 
severed (for example, due to a falling tree limb). Just like an open switch, a broken conductor 
will instantly cause a pronounced phase angle difference across the break point that is easy to 
detect with PMUs. This information has proven capable of actuating protection systems before 
an energized conductor would hit the ground and present a serious injury or fire hazard [16]. 

Another related use case is the detection of changes in the connectivity status of distributed 
generation (DG) through analysis of data from only the utility side of the interconnection, if 
direct telemetry is unavailable. Online monitoring of DG for real-time detection of unexpected 
trips or re-connection may identify protection coordination issues on the circuit. Knowing how 
much generation is actually connected at any given time will add confidence to other 
operations. This application is also related to DG-Load disaggregation, discussed below.  

3.5  Model Validation and Phase Identification 
Correct distribution circuit models are most important in the planning context, for example, 
when predicting the impacts of variable distributed resources. A comprehensive model would 
incorporate information about the impedance and connectivity of each electrical component in 
the network, including details about the physical layout and geometry (e.g. spacing of 
underground cables), time varying behaviors (e.g. load profiles and dependence on voltage), 
and response to disturbances (e.g. dynamic inverter models). In practice, it is difficult to 
compile and verify the accuracy of all this information, and planners must work with estimates 
that may or may not reflect how the actual system will behave.     

Precise voltage and current phasor measurements can be used to compute impedances of line 
segments and other components within the three-phase network, and compare empirical 
values to model data [17]. This application is very sensitive to data quality (specifically, 
transducer errors) and might benefit from further development (e.g. using suitable 
mathematical regression methods [7]). However, short of validating a circuit model in complete 
detail, one straightforward and immediately useful aspect is to identify the phase connectivity. 

The objective of phase identification is to recognize, track and report the connectivity and 
loading of the three phases (A,B,C) throughout the distribution system so as to prevent 
excessive imbalance. Distribution system maps and models tend to lack reliable information 
about the phase connection of single-phase laterals, double-phase laterals, or individual 
customers on the three-phase main feeder. This connectivity information is not entirely static, 
since during restoration work such as repairs after a major storm, the phasing may be changed, 
either deliberately or by mistake. Historically, utilities have relied on manual notations about 
connectivity from field crews performing the work. Smart meters are now a means for checking 
the loading of main and laterals, but determining the load by phase still depends on correct 
knowledge of the topology.   
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Unlike transmission systems, which benefit from the statistical aggregation of a large number of 
customers connected to different phases, distribution system loads can be very unequal. Load 
current imbalances on the order of 10% are not uncommon.  

Because of finite source impedance, unbalanced currents will furthermore result in unbalanced 
voltages on the distribution network.3 This can physically damage three-phase motors, and may 
also interfere with the controls of three-phase inverters. ANSI standard C84.1 specifies that 
balanced voltages be within 3%. NEMA motor ratings require a more stringent 1% voltage 
unbalance [18]. 

Increasing penetration of solar PV generation and electric vehicles brings an increased risk of 
distribution system unbalance. For example, a small number of customers with EVs on the same 
phase can suddenly have a greater impact on unbalance. At the same time, equipment based 
on inverter technology can be more sensitive to unbalanced voltages.  

Power system protection equipment (i.e. relays, circuit breakers, reclosers) and voltage 
regulators also may not operate as designed under significant phase imbalance. Their 
misoperation can cause nuisance tripping and voltage magnitude violations, respectively. 
Finally, appropriate phase balancing (i.e. within 3%) is necessary to maximize asset utilization 
(e.g. balance transformer capacity across all three phases), minimize energy losses, and help 
prevent equipment issues in the distribution network.  

Conventional methods for phase identification either rely on data from Geographic Information 
Systems (GIS), which is a known source of errors since it requires mapping by personnel, or 
commercially available dedicated phase identification tools. These tools require the installation 
of phase reference nodes, and the method is also impacted by transformer (delta-wye) phasing. 
Some tools rely on verification rules or clustering based approaches on time-series of voltage or 
consumption readings [19]. 

By contrast, PMUs measure voltage phase angles directly, which offers immediate visibility of 
phases. These phase angles will be 120o apart on the three phases, with a very small separation 
(on the order of a degree) between points on the same phase along a distribution circuit. Each 
delta-wye transformer or lateral tap introduces a 30o phase shift between locations, which 
makes the phase association much less obvious. In this situation, correlation between the time 
series signatures of voltage magnitude and/or angle can be used as an additional identifying 
tool. This is easiest during a large asymmetrical disturbance, like the one illustrated in Figure 5.  

                                                      
 
3 Unbalanced currents and voltages are also known as negative-sequence or zero-sequence components, which 
add to the positive-sequence quantities that represent balanced three-phase operation. 
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Figure 5: Voltage magnitudes and angles during a disturbance event at two locations separated by the 
transmission grid and multiple delta-wye transformers. Graphs show µPMU data on BTrDB, with time 

axis in seconds. (UC Berkeley, LBNL, Power Standards Lab) 

The example in Figure 5 shows voltage magnitudes and phase angles (relative to the same clock 
signal) during an event observed at two locations, Berkeley and Alameda. These two Bay Area 
locations are separated by a 115-kV transmission network and multiple transformers. Without 
any network model information, the phasing can be identified with confidence based on the 
different shape of the angle disturbance for each phase (right). This is possible despite the fact 
that matching phases are shifted by 180◦. It is also possible to match Phase A between the two 
locations based on the smaller per-unit magnitude of the voltage sag (left), but the association 
between Phases B and C on the basis of voltage magnitude alone is much less conclusive than 
inspection of the angle measurements. 

Using PMU data obviates the need for specific equipment to actively inject a signal for phase 
identification. Phase identification relies on the comparison of time-synchronized voltage phase 
angle measurements, but is not sensitive to their absolute accuracy. 

3.6  Equipment Health Diagnostics 
High-precision synchrophasor measurements can detect early signs of equipment aging, mis-
operation or impending failure from the electrical signature. This detection can help prevent 
costly damage or outages, by taking the equipment out of service for repair or replacement 
before it fails.  

Aging and deterioration in equipment such as distribution transformers or switchgear can be 
difficult to diagnose inexpensively while the equipment is online. Smaller service transformers 
(e.g. 25 kVA) that supply only a few customers are typically just replaced upon failure. Larger 
capacity equipment such as substation transformers can be tested using dissolved gas analysis 
(DGA) of the transformer oil that reveals chemical evidence of degradation (specifically, of the 
insulation material) and provides some estimate of remaining transformer life.  

In a pilot deployment of µPMUs at Riverside Public Utilities (funded by ARPA-E), researchers 
from Lawrence Berkeley National Laboratory discovered a voltage sag that characteristically 
followed within several cycles of tap change operations, accompanied by a small current 
transient. The signature is shown in Figure 6. This observation prompted utility personnel to 
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perform a field inspection of the transformer, which revealed an oil leak that could have 
resulted in costly damage [20]. 

  
 

Figure 6: Anomaly in the tap change signature gave early warning of deterioration at a substation 
transformer. PSL µPMU data visualized in Berkeley Tree Database plotter with horizontal axis in seconds; 

right graph shows individual 120-Hz data points.  (UC Berkeley and LBNL) 

Ongoing condition monitoring of utility equipment would help both to prevent specific device 
failures and to establish a general improved knowledge base for planning purposes. 

Equipment health diagnostics benefit from precision time-series measurements, time 
granularity of data on the order of a cycle or better, and synchronization of measurements 
made across different locations for validation through cross-referencing. There is no specific 
threshold for absolute accuracy. Explicit voltage phase angle data may be useful but are not 
intrinsically necessary. 

3.7  DG-Load Disaggregation 
Disaggregation of net metered distributed generation (DG) from customer load separates the 
load demand from the amount of generation provided by the DG at any instant. It uses high-
precision measurements on the utility side of the meter to estimate the actual generation and 
amount of load offset behind the meter.  

When the distribution utility lacks access to separate load and generation telemetry from 
customer premises, net metered solar generation obscures or “masks” an unknown amount of 
load from the system operator’s view. This “masked load” implies a greater system exposure to 
contingencies. The masked load must be accounted for to assure adequate generation reserves 
in case of simultaneous tripping of many DG units, and to assure safe cold load pickup during 
system restoration following an outage.  

Innovative algorithms combine PMU measurements on the utility side with available solar 
irradiance data for a high-fidelity estimate of individual PV generation and masked load, even 
when not directly metered. 

The conventional approach to estimating DG output is based on reported generation capacity, 
irradiance data, and generalized solar production models. These models lack specific 
information about operational up-time or degradation of any given PV installation, and the 
model fidelity suffers during variable (non-clear-sky) conditions, which are precisely those of 
greatest interest. Alternative approaches to identifying actual DG output and masked load 
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include adding telemetry on customer premises, or accessing customer PV generation data by 
way of third-party online platforms; each of these have intrinsic technical and non-technical 
challenges. 

In addition to revealing masked load, visibility of short-term DG behavior from the utility side of 
the meter offers the potential benefits of validating smart inverter performance, and 
correlating PV generation with feeder conditions such as voltage profile changes.   

DG-load disaggregation draws on continuous high-resolution time-series measurements of 
voltage and current, including local current vs. voltage phase angle for displacement power 
factor, from a single measurement point. There is no critical threshold for sampling rates or 
absolute accuracy; the fidelity of the estimate will improve in direct relation to data quality. 
Extant algorithms successfully used µPMU data with 120-Hz sampling and accuracy constrained 
by revenue-grade instrument transformers. This use case does not require comparative voltage 
phase angle measurements between locations. Future analytics might be enhanced by 
algorithms that use simultaneous power quality measurements in the time domain to identify 
harmonic signatures. 

Such signatures, if developed from aggregated injection/load measurements samples at high 
rates, can lead to individual load identification above and beyond load-DG disaggregation. 
Simplified tests based on ramp rates or change in power factors can identify equipment usage 
(say, air conditioners or dishwashers) within an aggregate energy profile for a household 
obtained from a smart meter [21] [22] [23] [24]. Use of µPMUs with far greater sampling rate 
can improve over the performance based on 15-min AMI data used in past work.  

Development of non-intrusive load identification schemes, however, has led to important 
questions regarding user privacy and security. In particular, it is known that smart meter time-
series can be used for occupancy detection for households [25]. For high-fidelity µPMUs with 
richer data, these concerns warrant further analysis. In particular, introducing some 
randomness (either in measurement or in consumption profiles through the use of small 
storage) has been suggested [26] to avoid exact disaggregation and its associated privacy 
issues. 

3.8  Fault Location 
The vast majority of faults in power systems occur at the distribution level. The traditional 
method of locating a fault on a distribution system is for a utility employee or crew to travel 
along the feeder where a protective device has operated, or where customers have reported an 
outage. The crew searches for the exact fault location visually in the case of overhead lines (e.g. 
by looking for an operated cutout fuse), or with an underground fault locator. 

Synchrophasor measurements can complement physical inspection to reduce both outage 
duration and cost to the utility. A simple approach is to estimate the fault location using 
measurements of the fault current and voltage at the substation and a feeder impedance 
model. However, this method gives no unique solution, since multiple combinations of fault 
location and impedance may yield the same measurements at the substation. Also, the 
contribution of distributed generation (DG) to fault current, which is not directly observable 
from the substation, can lead to errors in fault location. 
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The accuracy of fault location can be improved by collecting synchronized measurements of 
current and/or voltage at additional locations throughout the distribution system. Several 
approaches based on search, optimization, and state estimation techniques have been 
demonstrated to locate faults using distributed measurements. 

Many faults have been detected by µPMUs on distribution networks. An example is shown in 
Figure 7 [27]. As a first approximation, comparing the currents and voltage drops measured by 
multiple µPMUs distributed over a geographic area can indicate which of the µPMUs are 
upstream versus downstream of the fault location. It is also evident from the three-phase 
µPMU data which phases are affected by the fault. The specific fault location can then be 
computed from the set of measurements using a network model. Some algorithms, using 
simulated synchrophasor data, have demonstrated techniques for fault location to within a few 
meters or a few tens of meters [28] [29] [30]. Although these algorithms have yet to be 
validated using real µPMU measurements, the accuracy remains promising when simulated 
measurement errors are added [29] [30]. 

 
Figure 7: Three-phase voltage and current magnitude data streams collected by a µPMU during a high-

impedance fault [27]. The time window displayed is one minute. 

Fault location requires synchronized time-series measurements with time resolution at least on 
the order of a cycle (1/60 sec). While fault location methods using only voltage phasors [29] and 
only current phasors [30] have been demonstrated, maximum location accuracy ideally uses 
both magnitude and phase of both voltage and current. Since distributed generation can 
contribute significantly to fault current, measurements from the points of common coupling of 
DG installations are particularly advantageous. Knowledge of the errors introduced by current 
and potential transformers under high current and low voltage conditions is helpful to 
determine the uncertainty and confidence level in fault location. 

3.9  Network-Level Steady State Estimation 
State estimation generally means reconciling available physical measurements (of imperfect 
accuracy) with mathematical relationships (based on an imperfect model) to obtain a best-fit 
estimate of the state variables (voltage magnitude and phase) at each network node. A rigorous 
state estimation requires at least as many measurements as there are nodes in the network. 
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This condition is readily met in transmission systems, where a typical node represents a 
substation, but is much more difficult to achieve in distribution systems, where every service 
transformer is a node (i.e., branch point in the circuit). Without instrumentation at every node, 
some extrapolation from available data is possible, for example, by treating historical 
information about loads as “pseudo-measurements” [31]. The success of any state estimation 
methods is sensitive to the absolute accuracy of phasor measurements, including transducer 
errors.  

Short of providing complete knowledge of a network’s exact operating state at every moment 
in time, however, estimation of the steady state has been shown useful to identify impending 
unstable regimes like voltage collapse and bifurcations [32] [33] [34]. Time-synchronized, high-
fidelity measurements from distribution PMUs can identify dynamic deviations from normal 
stable conditions. PMU data can also be used to estimate the network steady state using 
regression over known covariance statistics. Time-stamped measurements are particularly 
helpful in this regard as they enable measurement of `delayed’ covariances at observed buses 
[35]. This significantly improves the estimation of steady state behavior and ambient noise 
statistics over traditional methods. 
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4.0 Synchrophasor networks and implementation 
A number of technical considerations affect the deployment and use of distribution-level PMUs 
and other time-synchronized monitoring systems. This section addresses those, starting with a 
discussion of distribution-level monitoring devices and the key issues around data quality and 
availability.   

4.1  Distribution-level PMUs and monitors 
PMUs designed specifically for use in distribution systems are sometimes referred to as D-
PMUs, or as micro-PMUs (µPMUs). The term µPMU originated from an ARPA-E funded project 
[36], but it is not trademarked and was conceived as a generic term to describe PMUs with 
extremely high measurement precision.  

The ARPA-E µPMU achieves a measurement resolution of 0.0001 per-unit voltage magnitude 
and 0.01 degrees of angle, which exceeds by several orders of magnitude the typical resolution 
of PMUs used in the transmission context [33]. The motivation for developing such a device is 
that voltage and current measurements in distribution systems are generally characterized by a 
smaller signal-to-noise ratio than in transmission systems. In particular, the change in voltage 
phase angle along a distribution circuit with typical power flows and impedances is on the order 
of fractions of a degree, compared to full degrees or tens of degrees along a transmission line 
[7]. 

As noted above, not every application for synchronized distribution system measurements 
draws on the explicit phase angle difference at different points on the circuit, so it is not strictly 
necessary for every sensor to be a distribution-specific PMU. On the other hand, there is likely 
an economy of installing standardized devices in a routine manner that by default are capable 
of supporting any and all applications, including the most exacting ones. 

PMUs for use in either transmission or distribution settings are commercially available from 
various manufacturers, and prototypes have been built for research purposes at several 
universities. Their characteristics vary and are they are too diverse to review here. 

A key distinction lies between “distribution PMUs” that are installed on the distribution system 
for purposes of diagnosing phenomena on local distribution feeders, versus those effectively 
looking up into the transmission system. In the first case, which is of primary interest to this 
Task Team and this report, distribution synchrophasors are compared between and among 
PMUs below the same substation. In the second case, PMUs are connected at the primary or 
secondary distribution voltage for convenience of access, but their synchrophasors are 
interpreted alongside data from more distant locations. Distribution PMUs may make a useful 
contribution for transmission level uses in this second way, but the specific requirements for 
precision and data quality from distribution PMU apply to the first category. 

PMU capabilities are already embedded in many devices such as relays and digital fault 
recorders, used in the transmission context and installed at some distribution substations. An 
important question for distribution PMUs is whether they can be embedded in common 
devices such as transformers, inverters or protective devices at reasonable cost, so that their 
deployment will not require a specific labor effort. 
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4.2  Data quality and noise 
High-resolution and high-precision synchronized measurements can support sophisticated data-
driven methods for improved management and operation of power distribution systems. 
However, the performance of a PMU sensor itself does not guarantee data quality. Impairments 
can be imposed on synchrophasor data during acquisition (at the level of the PMU or the 
instrument transformer), communications (at the network layer), and processing (e.g. phasor 
concentration). Noise, latency, data loss and timing issues are notable impairments that can 
affect the quality of synchrophasor data and reduce the performance of data-driven 
applications including control, monitoring and protection systems.  

Power distribution networks generally exhibit more pronounced and erratic variations of 
operating parameters than transmission systems. At the transmission level, statistical 
aggregation tends to smooth out time-varying loads, weather, and phase imbalance. In 
addition, noise and higher frequency components of high-resolution measurements at 
distribution networks might come from various dynamic behaviors of inverter and power 
electronic based components including DG, EVs, and smart and energy efficient loads. There are 
not yet extensive studies or practical guidelines to distinguish, classify and label between signal 
and noise at different time scales in distribution system measurements. 

In the context of calculations with synchrophasors, it is important to distinguish between two 
types of noise: namely, input noise and data noise.[37] In real-world scenarios, the input 
voltage or current signals that enter the input terminals of a PMU may be corrupted by additive 
or multiplicative measurement noise. Instrument transformers are an important source that is 
discussed in the following section. Moreover, harmonics and sub-harmonics can exist in the 
spectrum of these input signals, especially near inverter-based sources. Electromagnetic 
interference, caused by lightning and nearby wireless devices, can also aggravate signal 
distortion. The superposition of the above distortions and noises in the input voltage or current 
signals is called input noise. Analogous to stochastic systems, the input noise manifests itself at 
the output of the PMU as data noise. Data noise can be thought of as the random uncertainty in 
the reported synchrophasor data.  

The level of the input noise depends on several factors, including the type of environment in 
which the PMU is installed (for example, inside a substation building or mounted on a 
distribution pole). In practice, phasor measurements in distribution grids are affected by 
various errors and white noises to a greater extent than those measurements in transmission 
systems. Some distribution network sensor locations are harsh in terms of electrical noise, 
where the quality of PMU data can be significantly compromised. Most methods that aim to 
detect bad PMU data rely on data history to identify low-quality measurements, and will 
therefore be imperfect. A high level of input noise may overwhelm the signal and render the 
reported synchrophasor data useless for certain applications. 

When judging data quality, context is of the essence: what, exactly, does the user wish to infer 
from the data, and do with that information? It is worth noting that input noise may contain 
valid information that simply does not fit the context in which it is observed and interpreted. 
For example, harmonic content would be considered noise when calculating the phasor of a 
presumed pure sinusoidal signal at the fundamental frequency, but the same harmonics might 
represent the signal of interest in a time-domain power quality measurement. 
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For the purpose of data analysis, the difference between the reported data and the actual state 
of the grid can generally be modeled by data noise. As illustrated in Figure 8, the statistics of 
the data noise depend on how the input noise propagates through the system (in this case, the 
stochastic system is a PMU). Specifically, the level of the data noise depends the level of the 
input noise, the low-pass filtering process, and the phasor calculation method.  

Since different PMU vendors employ different filtering and phasor calculation methods, there is 
no unique solution for the explicit analysis of data noise. This analysis might be facilitated in the 
future either by full transparency of the various filtering and calculation methods, or by means 
of big data analysis drawing on many PMUs of different types. 

 

 
Figure 8: The generic procedure of synchrophasor data acquisition with additive input noise. (ASU) 

 

In sum, synchrophasor data end users deal with data noise, not the input noise. This assumes 
that communication systems do not impose any uncertainty on the synchrophasor data, i.e., 
the received synchrophasor data frames at the destination are identical to the transmitted data 
frames.   

Field data from actual PMUs deployed in the grid are subject to more uncertainties than 
simulation data created by software models. It is possible to make simulated data more realistic 
by adding a deliberate noise component (for example, before testing an algorithm on this data). 
Here, a crucial question is whether the data noise in the actual field data follows a Gaussian 
(i.e., normal) distribution. 

To find the answer to the above question, extensive analysis of field datasets is very helpful. 
The noise characteristics of the electrical signals on the distribution level have been studied in 
[38] and [39], by collecting instantaneous a.c. data and analyzing the frequency spectrum. This 
work found that the signals overall have about 60 dB to 70 dB noise, and there exists more 
noise in the low frequency band. Monitoring and control applications should adopt different 
processing methods depending on the distribution of the data noise. For example, a Kalman 
filtering method is the optimal choice for dynamic state estimation when the state and 
measurement are jointly Gaussian random processes, whereas a particle filtering method is a 
better choice for dynamic state estimation under non-Gaussian data noise assumption [40]. 
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4.3  Application Sensitivity to Data Quality 
As noted earlier, different applications exhibit very different sensitivity levels with respect to 
data noise. Some of the most sensitive applications are summarized below. 

• State estimation and networked control applications. State estimation likely has the 
highest noise sensitivity. If operating decisions are made on the basis of inaccurate 
estimates of system’s parameters, they may have unintended consequences and can 
lead to system instability. Accurate estimation of static and dynamic power system 
states is also vital for the performance of networked control systems. A dynamic state 
estimator should be highly robust against data noise, and PMUs with the greatest noise 
rejection capability should be used. However, special attention must be paid to noise-
delay tradeoff in data acquisition, since a higher noise rejection is translated into a 
greater delay, which is detrimental to control functionality [34]. 

• Network topology and disturbance detection applications. Monitoring of voltage and 
frequency disturbances is crucial for early detection of system instability, while 
monitoring of transients after changes in switch status (open or closed) helps detect 
network topology. Data noise may affect the decision-making process and result in 
errors, false alarms, and potentially unwanted control actions. Most monitoring 
applications will likely require using M-class PMUs, which deliver high data accuracy at 
the expense of longer calculation delays.  

• High-level control applications. Hierarchical and droop-based control applications in 
active distribution networks and microgrids can benefit from synchrophasor datasets. In 
comparison with networked control applications that rely heavily on real-time 
communications, high-level applications are less sensitive to data noise. However, data 
noise may undermine the quality of control process through misleading information 
extracted from synchrophasor datasets. The underlying premise is that high-level 
control applications are usually event-triggered and operate over longer time span. 
Hence, the network has enough time to diminish the impact of noise by post-processing 
of datasets. 

• Fault detection applications. Protection applications are highly time-critical. In situations 
where protective devices will operate based on synchrophasor information, the noise 
rejection capability of PMUs can be sacrificed in favor of delay minimization, as in P-
class instruments. However, data noise may result in inaccurate estimation of the fault 
parameters such as fault impedance and location.  

• Line Parameter and Thévenin Source Impedance Estimation. Line impedance estimation 
relies on small differences between measurements and is therefore highly sensitive to 
errors. The voltage drop over a distribution line segment (i.e., the signal of interest) may 
well be smaller than the uncompensated transducer errors, leading to an unacceptable 
signal-to-noise ratio. Likewise, the Thévenin source impedance estimated from PMUs at 
a substation can have a high error variance across different windows of data samples, 
and thus high uncertainty. Because these are off-line calculations, time is not of the 
essence, and any available processing techniques for improving data quality can be 
brought to bear.  
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4.4  Transducer Errors 
PMUs generally receive their input through couplers or transducers, namely, current 
transformers (CTs) and potential or voltage transformers (PTs or VTs) that bring grid current 
and voltage levels to a tolerable range for the PMU device.4 

These transducers become a significant source of both magnitude and angle error when 
interpreting the synchrophasor output. Specifically, the relationship between voltage or current 
magnitudes on the primary and secondary side of the instrument transformer will depart 
slightly from the ratio reported on the name plate, for reasons that include aging, 
environmental effects, and the burden on the instrument [41]. Signals also get phase-shifted 
when passing through the complex impedance. Individual PTs and CTs vary, even if they are of 
the same make and model, and even among the different phases (A,B,C) at the same location.  

Transducer errors are typically reported by a complex value called “ratio error,” a multiplicative 
term that corrupts the reported phasors. IEEE Standard 57.13 specifies the level of allowable 
error that a transducer (PT or CT) can introduce into a current or voltage measurement taken 
from its secondary side. The standard defines a set of transducer accuracy classes, each of 
which has an “error parallelogram” that specifies bounds on simultaneous magnitude and angle 
error.5 IEEE 57.13 has been in place since 1968, and the parallelogram approach to defining 
transformer error is well-established. 

As discussed further in Appendix A.2 on total vector error, there is some intuitive difficulty in 
reading an error parallelogram because of the different nature and representation of 
magnitude and angle quantities. Magnitude error, on the vertical axes of Figure 9, is given in 
terms of a ratio correction factor (RCF). The RCF is a ratio of transformer turns ratios, defined 
for an individual transformer as the ratio between the true turns ratio of that transformer and 
the transformer model’s nominal turns ratio. In other words, the primary-side current or 
voltage of a particular transformer is equal to its secondary-side value multiplied by its model's 
nominal turns ratio, multiplied by that transformer’s individual RCF.  

Angle error, on the horizontal axes of Figure 9, is given in terms of “transformer phase angle” 
(generally represented as 𝛽𝛽 for CTs and 𝛾𝛾 for PTs). 𝛽𝛽 or 𝛾𝛾 is defined as the number of degrees 
or degree-minutes by which the transformer’s secondary current or voltage angle leads its 
primary.  

                                                      
 
4 For example, a µPMU can safely receive an input up to 690V, which obviously needs to be stepped down from 
measuring, say, a 12-kV bus. Typical CT outputs for grid installations are on a 5-amp scale. PSL’s µPMUs use an 
additional ultra-high-precision CT to further transform the 5-A current signal into a voltage signal on a 0.33-V scale; 
this adds negligible error compared to the original high-power CT.  
5 The rationale for the parallelogram can be understood within the traditional context, apart from synchrophasors, 
where the principal information to be gleaned from high-precision instrument transformers is the real power P 
transferred at the local metering point. Since P depends on the cosine of the angle difference between voltage and 
current, and since current angle usually lags behind voltage, either a low reading of voltage angle or a high reading 
of current angle would increase the computed value of P. Thus, the impact on power measurement of a low 
voltage magnitude reading (requiring an RCF > 1) tends to be compensated by a lagging error in the voltage phase 
angle, whereas a low current magnitude reading is compensated by a leading error in the current phase angle. 
Similarly, high voltage or current magnitude readings would be compensated by the opposite angle errors. 
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Figure 9: Error parallelograms for Class 0.15 instrument transformers, showing permissible error bounds 
for potential transformers (upper) and current transformers (lower graph). (Adapted from IEEE 57.13.6) 

Instrument transformer classes are named for their RCF values. For a transformer of Class 0.15, 
with parallelogram pictured in Figure 9, the RCF must lie between 0.9985 and 1.0015. As can be 
seen in the figure, its phase angle error is bounded at approximately 7.5 degree-minutes.  

To date, distribution-level PMUs have mostly been deployed on the secondary sides of Class 0.3 
CTs and PTs, with RCF values constrained to lie between 0.997 and 1.003 and 𝛽𝛽 or 𝛾𝛾 values 
bounded at approximately 15 minutes. 

Note that the description and diagrams above apply only to metering specifications. Another 
class of specifications, which covers the use of transducers in relaying, defines acceptable 
transformer behavior during overcurrent and abnormal conditions.6 These relaying 
specifications have a different nomenclature from the metering classes discussed here.  

There is also an important difference between specifications for PTs and CTs. PTs are required 
to stay within the bounds of their error parallelograms only so long as their primary side voltage 
lies within 90% to 110% of the PT’s rated value. CT’s, on the other hand, are required to stay 
within the bounds of their error parallelograms even if primary currents drop as low as 10% of 
the rated value. Below 10% of rated primary current, the error constraints are relaxed. Between 
                                                      
 
6 While metering applications are concerned with precision and accuracy during normal operating conditions, 
transducers for protection systems must remain dependable under abnormal conditions such as large fault 
currents, even if the measurement values are approximate. A similar distinction applies to measurement (M-class) 
and protection (P-class) PMUs. 
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5% and 10% of rated primary current, the allowable values of magnitude and angle error 
double, effectively doubling the size of the error parallelogram, and below 5% of the rated 
primary current, there are no longer any limits on the error that the CT is allowed to induce per 
IEEE 57.13.  

These requirements make sense in that the operating voltage of a distribution circuit is 
expected to vary much less than the load. During normal operation of a distribution circuit, 
keeping voltage within 10% of a PT’s rated value should not be a concern. However, CTs could 
certainly experience primary currents of less than 5% of rated values, making them a potential 
source of large error during low-load periods. 

An important area of investigation is the drift of transducer errors over time. Stable transducer 
errors would not impact any application algorithms based on comparing measurements at 
different times. However, drift in transducer errors would introduce an apparent change in the 
measurements. Future research may examine what explanatory variables (such as transformer 
burden or temperature) affect transducer error, and whether these causes produce stable, 
predictable or unpredictable bias in PMU measurements. 

Initial observations from distribution synchrophasors suggest that medium-voltage PTs and CTs 
in the field may operate near the edge or even outside the error parallelogram, and that 
caution is therefore indicated when interpreting high-precision PMU measurements that use 
these transducers for their input [17].  It has been reported in [41] that the ratio errors can be 
as large as ±6% for voltage magnitude, ±4o for voltage angle, ±10% for current magnitude, and 
±6.67o for current angle. Such a level of error would deteriorate the results of many 
downstream applications. 

It is worth noting that before the advent of synchrophasors, transducer phase angle shifts in 
either voltage or current measurements would have had little direct meaning or consequence 
per se, being significant only by way of distorting overall voltage, current and power quantities. 
High-precision synchrophasor data analysis may herald a new level of scrutiny of instrument 
transformers and their performance in both theory and practice.  

 

 

 

 

 

 

 

 

 

 

 



 33 

4.5  PMU Placement: Theory 
The placement of PMUs is informed by two very different sets of considerations: theoretical 
and practical. The theory is concerned with how much information about the electrical network 
is conveyed by PMU data from particular locations, and how to maximize this information, 
assuming that PMUs are scarce.7 PMU placement strategies studied in the literature primarily 
aim to guarantee that the state of the grid (uniquely expressible as the voltage magnitu3de and 
phase angle at every node) can be estimated with a minimum number of PMUs.  

Some techniques for identifying optimal PMU placement ensure observability (in the rigorous 
mathematical sense) by ensuring the algebraic invertibility of linearized load-flow models (e.g., 
[42] [43]), while some others focus on the topological observability (e.g., [44] [45]). Another 
approach to the placement problem is to impose constraints that avoid the formation of 
“critical measurements,” or bottlenecks in the mathematical state estimation process (e.g., 
[46]).  

While some methods rely solely on the PMU measurements to guarantee observability [47], 
others have proposed the use of hybrid state estimation, in which the placement of the PMUs 
and SCADA meters is considered within the same framework, and input data from both sources 
are used to obtain the state of the grid. If the cost of PMUs or new sensor installation is high, 
this approach could be an economic way of utilizing PMUs while benefiting from SCADA data 
that is already available [48].  

The objective of full observability is much more difficult to meet in the distribution than the 
transmission context, since there are many more nodes or branch points on a distribution 
circuit (essentially, each service transformer is a node), and a complete state estimation 
requires at least one measurement per node.  

But not all applications are equally exacting. A key objective of distribution PMUs is to create a 
level of situational awareness for the distribution operator that is not available from SCADA 
(assuming that SCADA monitoring is already in place). PMUs can help detect anomalies or any 
behavior that does not conform to normal operations, and provide data for applications to 
issue appropriate alarms to the control center or trigger mitigation strategies. The value of 
PMU data in this context is substantial, even when the number of PMUs is insufficient to deliver 
full observability of the grid. Even without complete knowledge, when the state of the 

                                                      
 
7 It is worth noting that most of the PMU placement literature was developed during the period before PMUs were 
commercially available at reasonable prices, and most PMU installation entailed a costly and time-consuming 
process requiring site-specific design, a communications network upgrade, field crew training, dedicated truck roll, 
and a facility outage to enable the installation.  Less than a decade later, in contrast, transmission-level PMUs that 
meet IEEE technical standards are widely available (many already deployed with functionality resident in many 
digital relays), reasonably priced, and designs and business practices enable routine installation of PMUs in 
transmission substations and generation points of interconnection.  It should be possible to extend the lessons 
learned from transmission-level PMU design and installation to save extensive time and money in designing and 
deploying distribution-level PMUs (whether stand-alone devices or as part of multi-function IEDs).  Once low-cost, 
easy-installation measurement devices and communications are feasible, it will be possible to deploy PMUs across 
key portions of the grid with limited need to “optimize” device placement.  
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unobservable part of the network remains ambiguous, it is still possible to more or less coarsely 
classify the overall state of the system and assess abnormal trends and risks. 

For example, the authors in [49] propose a data analytic that is based on the inspection of 
validity of Ohm’s law for the full network, I = YV,8 which forces current and voltage phasor 
measurements (I,V) to be orthogonal to (1,-Y).  These algebraic equations are not exactly met 
during a fast transient, or exit from the quasi-steady state. This fact can help identify if there is 
an anomaly – for example, because the grid parameters have changed, or an external transient 
affected the distribution circuit. Furthermore, this rule gives a theoretical criterion for placing a 
limited number of PMUs for event detection: the goal is to be maximally sensitive to events 
that reflect the exit from the steady-state operation of the grid, regardless of the origin of the 
disturbance. The resulting placement algorithm optimizes a metric that depends only on the 
grid topology and electrical parameters. Figure 10 illustrates the optimal placement of 20 PMUs 
on the IEEE-123 test circuit based on this criterion. 

 
Figure 10: µPMU Placement for Event Detection in IEEE-123 Test Feeder. (ASU) 

As Figure 10 shows, the placement strategy scatters the PMUs fairly evenly across the network, 
and consistent with the intuition that sensors should be placed near the feeder head, the end 
of the feeder or its laterals, and branch points in the circuit.     

While theory can offer useful insights to confirm what is reasonable practice, PMU placement 
strategy will vary according to the user’s priorities and particular circumstances. Distribution 
circuits are highly diverse in terms of topology and physical layout of facilities, not to mention 
loads and connected resources, so there is no standard, one-size-fits-all solution for optimal 
placement. For example, if the goal is to inform the protection of an urban meshed network, 

                                                      
 
8 Written here in the succinct form where I is the vector of branch currents, V is the vector of node voltages, and Y 
is the nodal admittance matrix of the network that reflects the admittances (inverse impedances) connected to 
each node. Each element within I, V and Y is a complex number or phasor. 
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this would call for a different PMU placement strategy than monitoring the impacts of high-
penetration DER on a long radial feeder. In sum, there is still much to learn about the optimal 
design of a distribution-specific PMU network. 

If, in the future, the cost per installed PMU is small enough to just scatter them liberally across 
distribution systems, the optimal placement problem may translate into an optimal data usage 
problem. The question of where to install PMUs would then translate into which PMUs to query 
for data, for a given application. 

4.6  PMU Placement: Practical Aspects  
Practical considerations also demand that devices can be installed with reasonable effort. Until 
PMUs become a standard component for installation alongside or embedded within other 
circuit devices at the distribution level (e.g. switchgear, capacitor banks, transformers, or 
inverters), the best locations may simply be those that are most convenient.  

The following are observations and lessons learned from early field deployments of µPMUs for 
the distribution grid [7]: 

• It is highly desirable to connect PMUs in locations where a low-voltage signal is already 
present and accessible, i.e. connecting to the secondary side of existing instrument 
transformers (transducers) or service transformers. The alternative is to purchase and 
install new transducers rated for primary distribution voltage, likely at substantial cost. 
Beyond the substation, there are various possibilities to tap into existing PTs or CTs 
associated with line devices such as capacitor banks or reclosers, switches, and service 
panels. 

• Outputs from some existing transducers may be incompatible with inputs to µPMU 
sensors in terms of voltage level, current signal range, or impedance. Additional high-
precision 5A:0.333V CTs may be used to adapt the output from typical existing CTs to 
provide a suitable input for the µPMU. 

• Connection to 120V convenience outlets at electrical facilities may be an option, but this 
offers only single phase measurements.  

• Some PMU connection points may be difficult to access, either because they are on 
customer premises, or because they are surrounded by high-voltage equipment that 
mandates special safety precautions. Researchers in particular should consider what 
procedures will need to be followed to access a PMU or its modem in the field. On the 
other hand, field installations should not be too vulnerable to theft or vandalism.  

• Proximity to customers may also trigger data privacy concerns. For example, current 
measurements on the secondary side of a distribution transformer with fewer than 15 
customers connected may be considered a threshold for customer privacy.   

• A high-performance GPS receiver requires an unobstructed view of the sky, either 
immediately from the PMU location, or reachable with cable. Trees and other 
vegetation and roof structures can present challenges. For indoor installations, placing a 
GPS receiver at a window may or may not work reliably. 
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• For data streaming, Ethernet, cellular service, or some other communications 
infrastructure must be available on location. Cellular modems require a suitable power 
source. 

• The performance of different types of modem antennas with respect to dropped 
packets and latency varies significantly. There is a trade-off between modem 
performance and form factor, where a small form factor might be desired for reasons of 
aesthetics, space constraints, or minimizing draw as targets of vandalism. Some 
modems may not work well near the service boundary of different signals (3G/4G/LTE). 

• Underground locations will have special constraints on access and wireless connectivity. 

In sum, logistics and practical considerations are important for determining good and 
affordable installation sites. Field personnel need to be consulted by design engineers early in 
the process, and some iteration is to be expected. Since the cost of installation can outweigh 
the cost of a PMU (on the order of several thousand dollars), it may be less expensive to place 
more PMUs where convenient, than a minimum set at optimal locations. Such a strategy does 
impose a greater burden on the data infrastructure, the topic of the next section.  

4.7  Communications and Data Collection 
A useful PMU network requires local data storage (both resident within the PMU and within a 
local phasor data concentrator in the field), precise time-alignment and data storage at a 
central collection point (as in a distribution system control center), analytical tools to use those 
data, and high-speed, high-performance data communications networks to collect and 
transport the data. 

Synchrophasor data are typically produced at a rate of 30-120 Hz, where one sample per half-
cycle is the greatest meaningful time resolution in the phasor domain (any more detail about 
the voltage or current waveform has to be represented in the time domain). If stored, these 
measurements quickly add up to a considerable data volume. For example, a device that 
reports magnitudes and phase angles for 3-phase voltages and currents at 120 Hz produces 124 
million data points or about 1 GB per day.9 Since some applications involve real-time 
monitoring and others rely on off-line or forensic analysis, synchrophasor databases should 
serve both needs and support access to both real-time and archival data. With conventional 
tools, however, searching through archives for specific events at high granularity can take 
significant time and effort on the part of the user – and that assumes the user knows what they 
are looking for. This problem could become particularly challenging in distribution systems, 
where diagnostic applications may refer to numerous, densely deployed PMUs – but where 
disturbances happen quickly, so that it is generally desirable to preserve all records at full 
resolution. An effective distribution synchrophasor data infrastructure must therefore support 
large data volumes (many terabytes), extremely fast searches, and compatibility with advanced 
automated applications such as machine learning.   

                                                      
 
9 6 phasor values * 2 components per phasor * 120 values/sec * 3600 sec/hr * 24 hr/day = 124 million values/day. 
Each phasor value and associated time stamp is represented by several bytes.  
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The synchrophasor data rate is critical for observing fast-changing phenomena such as transient 
disturbances and faults, but under normal operation, a high data rate carries less information 
because successive data samples are more correlated. This implies that synchrophasor data can 
be compressed or decimated as appropriate, before transferring to data processing algorithms 
at different control layers with different needs.  

Since not all applications require the same reporting rate, the frequency of communication can 
vary – for instance, down-sampled from once per cycle to once every few seconds, or anomaly-
triggered. For maximal flexibility, the data should be able to flow to multiple networking nodes, 
where each node can be armed with different analytic tools. The analyzed data can be 
visualized at the node, sent to users as is or filtered, or sent when a threshold for anomaly 
detection is met. For example, a summary may be sent to the distribution system operator, or a 
control instruction sent from the networking node to the relevant devices [51]. New analytic 
tools with variable-rate data processing are one approach to reducing the burden of data 
communications and archival. 

 

4.8  BTrDB 
The Berkeley Tree Database (BTrDB) was developed (under an ARPA-E award) specifically for 
the efficient storage and fast searchability of time-series micro-PMU data in the distribution 
context [36] [50] [51]. BTrDB is an open-source software that can run on distributed commodity 
hardware or in the cloud, as part of an innovative architecture for synchrophasor data analysis. 
It handles large insertion rates while supporting advanced query and visualization techniques 
for both real-time and historical data through an innovative tree data structure. For example, 
the database can return search results of 2,000 points summarizing anything from the raw 
values (9 milliseconds) to 4 billion points (a year) in 100-250 milliseconds [50]. With this tool, 
human users and automated search tools can seamlessly zoom in and out to scrutinize data 
streams at different time resolutions, and easily find events buried in terabytes of data like 
needles in a hay stack. Visualization is provided by a multi-resolution plotter (“Mr. Plotter”).10  

Figure 11 shows the architecture and deployment design for the original BTrDB system, which 
can scale to handle analyses and storage for tens of thousands of PMUs [51]. This level of 
scalability becomes necessary in the context of deployments on the order of 10 PMUs per 
distribution circuit. It also introduces the possibility of comparing synchronized data from 
thousands of distribution feeders across a wider area, which has never been done before.  

As shown in Figure 11, µPMUs stream raw data into the database by way of the “chunk loader.” 
To enable human-centric analyses, the data is then automatically “distilled” using the GPS lock 
stream and continually evolving heuristics for good data, into globally timestamp-aligned clean 
data streams. These streams become the inputs for a set of additional algorithms (“distillers”) 
that create a directed data flow graph for a single phase of an individual μPMU. These are 

                                                      
 
10 An illustrative sample of µPMU data can be seen at http://powerdata.lbl.gov.  

 

http://powerdata.lbl.gov/
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repeated for the other phases, and again for each of the other μPMUs [50]. The BTrDB 
networking infrastructure is agnostic to the particular sensor device connecting to it, so its use 
is not limited to PMU data. Rather, it can process and combine time-series data from 
heterogeneous sources and at different time resolutions. BTrDB employs standard protocols 
and file formats in order to facilitate a diversity of devices, information, and applications. 

 

 

 
Figure 11: BTrDB Data System Architecture. (Michael Andersen, UC Berkeley) 
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4.9  Cybersecurity and Synchrophasors 
There are two major cybersecurity issues involving synchrophasors that, ultimately, will have to 
be addressed in utility implementations at the distribution level: (1) to what extent can and 
should PMU and PDC system installations provide warning and mitigation of cyberattacks; and 
(2) what minimum defensive measures are essential to offset known vulnerabilities and threats 
involving synchrophasors. 

On (1), we expect that utilities will structure and operate networked synchrophasor 
deployments to provide integrated situational awareness. Warning tools would include time-
synchronized cyberattack anomaly detections, possibly based on techniques like those 
described later in this report. Mitigation tools may include defensive efforts to maintain electric 
service, including “islanding” measures as defensive perimeters shrink. As national policies 
evolve that address critical power dependencies (such as national security installations, air 
traffic control systems, major medical facilities, etc.), utilities will likely have to build situational 
awareness capabilities to support survivability in cyber war. Distribution synchrophasor 
networks could play a unique and vital role in this context.  

Regarding (2), it is known that the North American grid has been targeted for potential 
cyberattacks by foreign entities since at least 2012. In particular, Russian cyber capabilities raise 
grave concerns on vulnerabilities that extend to the distribution substation level. Known 
vulnerabilities include “supply chain” vendor penetrations (both grid-specific and IT-industry 
components), “human-machine interfaces” (HMI) for control, “industrial control systems” (ICS) 
including firmware replacement, multiple methods for penetration of networks and 
connectivity protocols, vendor-maintained systems, and attack structures for remote control, 
stealth and anonymity. Critical Infrastructure Protection (CIP) v5/v6 standards have proven 
ineffective to detect or mitigate recurring Russian grid reconnaissance, which now include 
nuclear generation sites. While specific recommendations are beyond the scope of this report, 
we note the importance of designing distribution synchrophasor networks with an ability to 
resist cyber-intrusions. 

 

4.10 Time Synchronization Requirements  
For correct operation at the required performance level, all elements of a synchrophasor 
system (both PMUs and the associated phasor data concentrators) must continually access a 
common and accurate timing source linked to Coordinated Universal Time (UTC). Any 
inaccuracy in a PMU’s timing adversely affects the PMU measurements, especially the 
estimation of phase angles of the measured quantity.  

The IEEE C37.118.1-2011 standard suggests a maximum uncertainty in the synchrophasor time 
stamp of 1 µs. This standard can be met by referring to a conventional GPS pulse-per-second 
signal, or some other high-accuracy time delivery method. Alternative or supplementary high-
precision timekeeping technologies such as eLORAN, White Rabbit, and chip-scale atomic clocks 
have been discussed in the synchrophasor context [52]. GPS receivers or network-distributed 
time are presently the most common methods for accessing precision time signals. 
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The 1-µs accuracy standard for timekeeping recognizes that there will be other sources of error 
besides the reference clock, including the magnitude measurement, which all need to fit into 
the error budget (equivalent to 26.5 µs at 1% TVE). Another important source of error 
originates from outside the PMU proper, namely, the voltage or current transformers through 
which PMUs are connected to medium- or high-voltage equipment; these transducer errors are 
not part of the PMU performance standard, but are discussed in a separate section below.    

Recent testing performed on commercial PMUs (documented in [53] and using tools found in 
[54]), supports the case for strict time accuracy standards, leaving more margin for other 
errors. Figure 12 illustrates the effect on phase angle error of an artificially introduced time 
error. The first step change with a 10-µs error already drives the phase angle error near or 
above the total PMU error budget, shown as the reference line at 0.573o. Further discussion 
can be found in the Singh et al. paper on assessment [55]. 

 

 
Figure 12: Phase error in measured voltage signals in presence of instrumentation channel and varying 

time error (leading time) in steps of 10µs at point A and B. [53] 

 

In the context of distribution systems, there is reason to consider synchrophasors with greater 
precision and accuracy than required by the C37 standard. How best to articulate performance 
expectations or future standards for this context will be an important subject of further work. It 
may turn out that TVE is not the most suitable way to describe a phasor measurement error in 
situations where the acceptable error is very small, e.g. where measurements from different 
locations are very similar to each other. Appendix A offers some comments intended to 
stimulate discussion in this direction. 
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Appendix A: Synchrophasor Representation and Quantities 

A.1  Phasor Representation 
The term “phasor” implies an abstract and idealized mathematical representation of alternating 
current (a.c.) electrical quantities. It takes the form of a vector with a magnitude and angle, 
where the magnitude represents the amplitude or root-mean-square (rms) value of voltage or 
current, and the angle represents a time shift in the waveform. Though it is an essential tool in 
power engineering, phasor analysis becomes problematic if and when the actual power system 
departs from the idealized state. In fact, how best to define phasor quantities and their 
accuracy under dynamic conditions is not a settled question.  

Section 2.0 provided a brief summary of key terms that express the conventional, idealized 
understanding of synchrophasor measurements and errors. For many uses of synchrophasors, 
that understanding is quite sufficient. But with the introduction of distribution synchrophasor 
applications comes a new level of expectation for the performance of PMUs, and a new round 
of questions about the fidelity with which phasor quantities represent what it physically 
happening in the electrical network. To help support these conversations, this Appendix will 
walk through the details of the conventional definition, and then discuss some of the nuances 
and theoretical limitations of synchrophasor measurements. 

It is convenient and standard to assume voltage and currents in an a.c. power system are 
sinusoidal functions of time. Written in cosine form, the equation for a single such quantity is 

    𝑥𝑥(𝑡𝑡) =  𝑋𝑋𝑚𝑚 cos(𝜔𝜔𝑡𝑡 +  𝜙𝜙)    (1) 

Here x (t) is the instantaneous value of the function, Xm is the maximum value, ω is the angular 
frequency (2π times the a.c. frequency in hertz) and 𝜙𝜙 is usually called the phase. This simple 
wave representation has given rise to a number of very useful methods in power systems. Most 
useful among them is the phasor diagram. 

Power system engineers commonly assume that the frequency is at its nominal value, and refer 
to just the magnitude, 𝑋𝑋m, and phase, 𝜙𝜙, as a phasor. These two quantities, as measured and 
time-stamped by a PMU, are referred to as a synchrophasor. By convention, power engineers 
replace the maximum value or amplitude Xm with the root-mean-square value, 𝑋𝑋rms = 1

√2
𝑋𝑋𝑚𝑚. 

The local frequency is also measured and reported by the PMU.11 For the purposes of 
measuring 𝜙𝜙, the time may be taken as a “local zero” at the UTC second rollover, and therefore 
at the top of every cycle of the reference signal.   

Often, a different representation is used, based on Euler’s equation.12 For a complex signal 
𝐴𝐴𝑒𝑒𝑗𝑗(𝜈𝜈𝜈𝜈+𝜑𝜑) the relationship  

                                                      
 
11 While the frequency of a synchronous a.c. system is the same everywhere to a first approximation, precise 
measurements reveal local and short-term departures from synchronicity, which are of particular interest here. For 
example, power oscillations across an a.c. grid can be observed in terms of changes in local frequency. 
12  𝑒𝑒𝑗𝑗𝑗𝑗 = cos 𝑥𝑥 + 𝑗𝑗 sin 𝑥𝑥, where 𝑗𝑗 =  √−1. 
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𝐴𝐴𝑒𝑒𝑗𝑗(𝜈𝜈𝜈𝜈+𝜙𝜙) = 𝐴𝐴 cos(𝜈𝜈𝑡𝑡 + 𝜑𝜑) + 𝑗𝑗𝐴𝐴 sin(𝜈𝜈𝑡𝑡 + 𝜙𝜙) (2) 

 

allows us to regard the projection of the sinusoidal quantity onto the horizontal axis as being 
represented by the real part of the quantity.13 That is, an equation of the form of Equation (1) is 
given by  

𝐴𝐴 cos(𝜈𝜈𝑡𝑡 + 𝜑𝜑) = Re[𝐴𝐴𝑒𝑒𝑗𝑗(𝜈𝜈𝜈𝜈+𝜙𝜙)] (3) 

 

Likewise, we may write, 

𝑋𝑋m𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙) = Re�𝑋𝑋m𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈+𝜙𝜙)�. (4) 

We can separate the exponential expression into two parts: 

𝑋𝑋m𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈+𝜙𝜙) can be written 𝑋𝑋m𝑒𝑒𝑗𝑗(𝜙𝜙)𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈).  

The time-dependent, unit-sized part 𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈) is called by mathematicians the rotating phasor, or 
the rotator [56] [57] [58].14  

The part 𝑋𝑋m𝑒𝑒𝑗𝑗𝜙𝜙is called the stationary phasor. We could write that stationary phasor as 
𝑋𝑋m𝑒𝑒𝑗𝑗𝜙𝜙 = 𝑿𝑿m   so that the complete expression 𝑋𝑋m𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈+𝜙𝜙) is  𝑿𝑿m𝑒𝑒𝑗𝑗𝜔𝜔𝜈𝜈.  

The complex number 𝑿𝑿m gives the position of the rotating phasor at time t = 0. This 
corresponds to the part of Equation (4) (or equivalently, Equation (1)) that power engineers call 
the synchrophasor.  

The phasor representation brings significant simplification to the problem of analyzing power 
systems, because it allows the use of geometrical solutions to the equation representing the 
signal, instead of the more complicated trigonometric ones. Further, it allows the use of what 
are called phasor diagrams, an invaluable aid to visualization. A phasor diagram representing 
Equation (1) is shown on the right side of Figure 13. The left side shows how it is derived. Some 
power engineers do not draw the arrow indicating rotation, but it serves as a useful reminder 
that the object we treat as stationary for the purpose of doing arithmetic is imagined as 
spinning counterclockwise at the (presumed constant) grid frequency. 

                                                      
 
13 A sinusoid as the real part of a complex function can be visualized as the shadow cast by a three-dimensional 
helix or corkscrew, which appears as a sine or cosine wave when viewed from any side (perpendicular to its central 
axis, which in our case represents time). 
14 Recall that the quantity ejx rotates in the complex plane as x increases, and |ejx |= 1 for all x.  
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Figure 13: Rotating phasor whose projection 

on the horizontal axis is 𝑥𝑥(𝑡𝑡) = 𝑋𝑋𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑡𝑡 + 𝜙𝜙). (PNNL) 

 

Note that the word “phase” can be interpreted as the entire argument of the cosine (𝜔𝜔𝑡𝑡 +  𝜙𝜙), 
or as just the value at time-zero, essentially the phase offset (𝜙𝜙). In the PMU, phase is the value 
measured as the phase difference between two signals: one is the signal being observed, the 
other is a reference, an assumed sinusoid at exactly the nominal frequency (50.00 or 60.00 Hz) 
timed such that the positive peak of the signal coincides with the second-tick of UTC. Phase for 
the PMU is thus measured between two signals that may be of different frequency. Therefore, 
the difference in the values of the entire argument of the cosine must be used. Time can be 
taken as zero at the start of any cycle of the reference wave. 

In summary, a PMU reports the values of a synchrophasor, namely, the result of the 
measurement15 of the magnitude, 𝑋𝑋m, and phase angle, 𝜙𝜙, relative to a cosine function at the 
nominal power frequency. Phasor values are the values of an abstraction known as the 
“analytic signal,” and the values found by measurement apply for the entire duration of the 
observation window (say, one a.c. cycle). The analytic signal is discussed further in Section 4. 

Figure 14 illustrates a typical evolution of phase angle reported by a PMU as the frequency 
increases from below 60 Hz to a frequency higher than that. When frequency happens to be 
different than 60.00 Hz, the angle relative to the reference steadily changes, and periodically 
“wraps” around between 360o and 0o. Absent local disturbances, PMUs at two locations in the 
power system will show a constant difference between their phase angles, and their traces 
appear parallel except that they wrap at slightly different times. 

                                                      
 
15 It is worth remembering that the word “measurement” refers to a process; the result (say, a measured value) is 
what we get out of the process. 
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Figure 14: Phase angles reported by PMUs. (UC Berkeley) 

 

A PMU generally also reports a frequency ω. Note that if ω were in fact exactly constant (as 
presumed by the definition of a ‘stationary phasor’), and at the nominal value, the phase angle 
would never change. If the frequency is constant but not at the nominal value, the phase will 
generate a ramp with time, as in the left and right sides of Figure 14. Only when the grid is at 
the nominal frequency will the phase value be constant. 

In practice, it is understood that grid frequency varies – but hopefully only slightly. If the change 
in ω is relatively small and slow, the time rate of change of ϕ in the stationary phasor reported 
by a PMU is not particularly informative. It is also understood, however, that if the measured 
value of ω changes very suddenly – in other words, if the actual electrical quantities seriously 
fail to conform to the assumed sinusoidal model – there arises an ambiguity as to what a PMU 
should report as the “phase” and the “frequency”. This sort of event can happen during a fault 
on the power system. It is worth remembering, though, that PMUs were not designed to cope 
with conditions so far from normal.  

The quantities Xm, ϕ and ω are evaluated over an interval of time defined by the IEEE standard 
C37.118.1 [59]. Because of the inherent ambiguity, this standard does not require a rigorous 
reconciliation during transient conditions. This ambiguity is further discussed in Appendix B. 

The rate of change of frequency (ROCOF), expressed in hertz per second, describes how rapidly 
the frequency is changing, indicating an imbalance between generation and load. It is 
represented by a term in the cosine argument that varies as the square of the time. In the ideal 
steady state, ROCOF would be zero.  



 45 

A.2  Total Vector Error 
The time accuracy requirement in IEEE C37.118.1-2011 is indirectly determined by the need to 
meet the requirement for a maximum 1 percent of a value called the Total Vector Error (TVE), 
under steady-state conditions. TVE is a way to express the uncertainties in the result of the 
measurement as a combined error budget for two components: one due to the measurement 
of amplitude, and the other due to the measurement of the phase. In the case of zero 
uncertainty in the result for phase, a maximum of 1% or 0.01 per-unit error is allowed in the 
result for amplitude, and vice versa. A problem with TVE is that because it combines two 
quantities, their respective uncertainties cannot be propagated in a rigorous manner. 

The TVE is easy to visualize as a circle around the tip of the synchrophasor arrow, where the 
radius of the ‘error circle’ is simply 1% of the full length of the phasor being measured. This is 
illustrated in Figure 14. 

 

 
Figure 14: Visualization of Total Vector Error, not to scale. (PNNL) 

It is not obvious how to put a percentage error number on phase, because phase is somehow 
“different” from magnitude. The quantities that are standardized by the SI system are what are 
now called rational in the classification scheme of Stevens [60] [61] [62]. The term implies 
something about the kind of mathematical operation that can be done on the result of the 
measurement: it is possible to take ratios, because all the SI quantities have a single natural 
zero and a linear scale. Angle is a fundamentally different kind of quantity. The quantity 𝜙𝜙 has 
to be evaluated from some defined reference, and should really be called a phase offset. 

The allowable uncertainty in phase is determined as follows. To cope with the difference in 
kind, it may be conjectured that at some point in the history of the PMU it was decided that if 
the 1% uncertainty of amplitude were regarded as a small phasor added to (or subtracted from) 
the phasor that represents the power system quantity being measured, angle uncertainty and 
amplitude uncertainty could be combined, much as the uncertainties in rational quantities were 
combined: as the square root of the sum of the squares.16 

                                                      
 
16 This method of combining is actually justifiable only under a restricted set of conditions that were not 
taken into consideration in this development. Nevertheless, the method seems to have produced a 
measure of uncertainty that applies to angle with a size that seems quite appropriate to our situation.  
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For two variables, this combination method, the root of the sum of the squares, results in the 
equation of a circle. Recall that the equation of a circle whose center is the origin is  

 

𝑟𝑟2 = 𝑥𝑥2+𝑦𝑦2. (5) 
 

A circle whose center is (a, b) is described by 

 

𝑟𝑟2 = (𝑥𝑥 − 𝑎𝑎)2+(𝑦𝑦 − 𝑏𝑏)2. (6) 
 

Added to a phasor diagram, the terms a and b are the horizontal and vertical offsets of the 
center of the circle, so that to put the circle at the end of the phasor, Equation (6) becomes 

 

𝑟𝑟2 = (𝑥𝑥 − 𝑋𝑋m cos(𝜔𝜔𝑡𝑡 + 𝜑𝜑))2+(𝑦𝑦 − 𝑋𝑋m sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑))2. (7) 
 

The circle thus described is not a phasor, though it is sometimes drawn as if it were in order to 
illustrate the size of the circle. It is simply a circle that moves along with the tip of the phasor, 
and there describes a region within which the total vector error is defined as being acceptable. 

This situation is illustrated in Figure 14. For clarity, we further exaggerate the size of the TVE 
circle in Figure 15. 

 

 

 
 

Figure 15: Close-up visualization of Total Vector Error, very much not to scale. (PNNL)  

Here we can see that the geometry of the situation indicates that the maximum permissible 
phase error is given by  

 

𝜖𝜖𝜑𝜑 = sin−1 �
1

100
� = 0.573° (8) 
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where 𝜖𝜖𝜑𝜑 is the phase error. The fact that this value is a constant supports the earlier 
observation that angle is somehow “different” from magnitude. A 1% error in magnitude 
depends on the size of the quantity being measured. A “1% error in angle” is always just over 
half a degree, whatever the value of the phase being measured.17  

While the origin of the TVE presented above is speculative, the result is not. For the case of zero 
magnitude error, where the entire 1% error budget can be allocated to the angle portion, the 
maximum permissible phase angle error within the 1% TVE standard is 0.573o. This error is 
independent of the angle being measured.  

At 60 Hz, where a full period of 360o corresponds to 1/60 of a second or 16.7 milliseconds (ms), 
an angle error of 0.573o corresponds to a timing error of 26.5 microseconds (µs). If the clock 
signal is delayed, the phase will be reported as advanced from its proper value. The standard 
suggests a maximum timing uncertainty of 1 µs, rather than 26.5, to allow for sources of 
uncertainty other than angle.   

It is interesting to examine the way phase and magnitude errors combine. Figure 16 shows a 
situation where the measured angle and magnitude each have errors.  

 
 

Figure 16: Combined magnitude and phase error. (PNNL) 

In Figure 16, the center of the TVE circle, radius r, has been labeled O´. Suppose that the phasor 
magnitude OO´ is measured as OA, larger than it really is. A line has been drawn from O to A, 
passing through O´. A chord of the circle has been drawn perpendicular to the line OA. It 
intersects the circle at B and C. The maximum allowable phase error therefore corresponds to 
one of the two points at which the chord BC intersects the circle, say at C. The problem is to 
find the angle 𝜖𝜖𝜑𝜑. 

                                                      
 
17 The value, just over 34 minutes of arc, seems to pass a “reasonableness test.” The IEEE Standard for 
instrument transformers (C57.13-2008) has three classes of accuracy. They allow a magnitude error of 
0.3, 0.6 and 1.2 percent. The maximum angle error corresponding to each of these classes is 30, 60 and 
120 minutes. One might reasonably infer that a 1% transformer would be allowed 100 minutes of phase 
error, just three times the amount allowed in the PMU. 
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The triangle O´AC is a right triangle with hypotenuse r. The angle O´AC is a right angle by 
definition. The line O´C is of length r. If we denote the length O´A by 𝜖𝜖m, then the length of the 
line AC is given by AC = �𝑟𝑟2 − 𝜖𝜖m2. It follows that the angle 𝜖𝜖𝜑𝜑 is given by 

 𝜖𝜖𝜑𝜑 = sin��𝑟𝑟2 − 𝜖𝜖m2� . 

This straightforward Pythagorean relationship allows us to draw graphs showing the interaction 
of the two sources of error. Examples (similar to the examples in Appendix E of the Standard) 
are shown in Figure 17. 

 

 
Figure 17: Interaction of phase and magnitude errors. (Based on Figs. E.2 and E.3 of IEEE Std C37.118.1-

2011) 

A.3  Comment on TVE 
The TVE definition has the solved a problem for the PMU: it allows a “percentage error” 
number to be attached to the measurement of phase. Unlike the result of a measurement of a 
rational quantity, this percentage error is constant, regardless of the size of the angle being 
measured.  

However, the combining of two separate measurement processes within the TVE may also be 
counterproductive. Measurement results are normally stated with a pair of numbers giving the 
uncertainty of the result. Because of TVE, it is impossible to do that for the angle or the 
magnitude measured by the PMU. 

A potentially more useful approach would be for the PMU community to accept the value of 
0.573 degrees as corresponding to 1%, but also begin to state the measurement results with a 
two distinct statements of uncertainty: one for angle and another for magnitude.  

Such a change would bring the PMU into line with the way IEC standards specify accuracy 
requirements for instrument transformers in IEC 60044-1 [63]. For example, a measuring CT of 
accuracy class 0.2 would be allowed an error of no more than 0.2% ratio at rated current, and a 
phase displacement of no more than 10 minutes of arc. The limits of error for the complete set 
of classes in IEC 60044-1 are shown in Figure 18, along with a line defining the 1% TVE for a 
PMU. 



 49 

 

 
 

Figure 18: IEC error limits for measurement transformers, along with PMU TVE limit. (PNNL) 

Diagrams such as Figure 18 show the limits of accuracy for two parameters. In the IEC standard, 
they are not independent: although a device may be compliant when it has the maximum 
allowable ratio error and at the same time the maximum phase error, the values of these limits 
are related. It is not possible to obtain a device with only 30 minutes of phase error without at 
the same time specifying a maximum 0.5% ratio error. In the sense of connecting ratio error 
and phase error, TVE is no different. 

However, in the sense of being able to propagate uncertainties, TVE is different. TVE has only 
one class, and does not allow the user to know the separate errors on phase and magnitude. An 
application such as a distribution system voltage control must know the voltage to much 
greater accuracy than 1%, and an application that computes steady-state power flow along a 
distribution feeder must know the phase angle difference between two locations to much 
better accuracy than 0.573 degrees. While that may well be possible with a given PMU, it is 
impossible to be certain if its performance is described only by a total vector error. 

It would be better for some users to define the allowable errors separately. 
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A.4  Phasor Quantities – A Closer Look 
The stationary phasor is often called simply the phasor by power engineers. The expression 
𝑋𝑋m𝑒𝑒𝑗𝑗(𝜔𝜔𝜈𝜈+𝜙𝜙), evaluated at time t = 0, results in the two quantities that define the stationary 
phasor, 𝑋𝑋m and 𝜙𝜙. Power engineers are taught that since the power system frequency is 
constant, power system signals can be represented by just these two quantities, amplitude and 
phase. In reality, the signal observed on a power system is not a perfect sinusoid of constant 
frequency. This section discusses how a phasor can nevertheless be defined mathematically. It 
is worth remembering, though, that since a phasor always aims at describing a cosine, 
regardless of how it is obtained, it will not capture information about the signal that is not well 
modeled by a cosine expression. 

Having said that, it is often convenient to assume that the sinusoidal representation applies to 
voltages and currents in the power system. It is also convenient, in some PMUs and in the 
analysis of distortion, to perform Fourier transforms on the signals thus represented. If that is 
done, the spectrum produced is two sided, symmetrical around zero frequency.18 It may seem 
troublesome to deal with a negative frequency, since it has no physical meaning. But in fact the 
negative part of the spectrum is redundant – it contains no information that is not also in the 
positive part – and it can be removed mathematically.  

Figure 19 illustrates the symmetric amplitude and anti-symmetric phase of the power spectral 
density of an arbitrary real signal 𝑥𝑥(𝑡𝑡).  

 

We assume that the signal of interest is a real-valued function: that is, its values as a function of 
time are in the set of real numbers. This follows from an assumption made in the process of 
measurement, namely that the results of the measurement of a series of sampled values map 
into the set of real numbers. It is intuitive that if the samples represent analog physical 
quantities such as instantaneous voltages and currents, they must be real.  

                                                      
 
18 The frequency spectrum describes a decomposition of the original signal, which can have any shape, into 
contributions from pure sinusoidal waves at (perhaps infinitely) many different frequencies. The spectrum shows 
the amount of each that goes into the “recipe” for creating the shape of the composite signal. A helpful 
introductory reference on this topic is The Intuitive Guide to Fourier Analysis & Spectral Estimation by Charan 
Langton and Victor Levin, Mountcastle Academic, 2017. 

Figure 19: Spectrum of a real valued signal. (ASU) 
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Given a real-valued function 𝑐𝑐(𝑡𝑡), we can construct its analytic signal 𝑐𝑐𝑎𝑎(𝑡𝑡):  

𝑐𝑐𝑎𝑎(𝑡𝑡) ≜ 𝑐𝑐(𝑡𝑡) + 𝑗𝑗�̂�𝑐(𝑡𝑡) (5) 
 

where �̂�𝑐(𝑡𝑡) is the Hilbert transform19 of the signal 𝑐𝑐(𝑡𝑡). 

The analytic signal representation is capable of dealing with time-variant magnitude and angles; 
in ways that some might consider simpler than the sinusoidal representation. Written in polar 
coordinates, we could imagine a generalized signal that has a changing phase as  𝑐𝑐𝑎𝑎(𝑡𝑡) =
𝑋𝑋𝑒𝑒𝑗𝑗𝜙𝜙(𝜈𝜈) where 𝜙𝜙(𝑡𝑡) is the instantaneous phase. In power system terms, this instantaneous 
phase, changing with time, could include changes due to changes in both machine speed and 
system parameters. We can say that the time derivative of phase is the instantaneous (angular) 
frequency.  

This much is hinted at in the IEEE standard for PMUs, but the words must be interpreted with 
caution. The words “frequency is the derivative of phase” do not apply to the equation 𝑥𝑥(𝑡𝑡) =
𝑋𝑋m cos(𝜔𝜔𝑡𝑡 + 𝜙𝜙) if “phase” is taken to mean only the term 𝜙𝜙. Rather, the “phase” whose rate of 
change matters is the entire argument of the cosine, (𝜔𝜔𝑡𝑡 + 𝜙𝜙). 

In reality, neither amplitude nor phase nor frequency of the signal we deal with in the power 
system are truly represented by constant values. They are themselves functions of time, giving 
rise to the complex signal  𝑿𝑿𝑚𝑚(𝑡𝑡) =   𝑋𝑋𝑚𝑚(𝑡𝑡) 𝑒𝑒𝑗𝑗𝜙𝜙(𝜈𝜈).  This fact does not preclude the use of 
phasors, but it suggests constant vigilance to remember the distinction between idealized 
mathematical objects and the physical phenomena they are intended to describe. 

Generally, any arbitrary real signal 𝑥𝑥(𝑡𝑡) admits representation into a phasor with respect to an 
arbitrary frequency 𝜔𝜔. To understand that, one has to think about what the phasor signal 
represents in the Fourier domain.  

Any real signal 𝑥𝑥(𝑡𝑡) has a power spectral density that has conjugate symmetry around 
frequency zero, as shown in Figure 19. 20 The phasor signal spectrum is what is seen isolated in 
the box re-centered on (positive) frequency. In fact, the phasor representation is obtained 
mathematically by multiplying by zero everything that is at negative frequencies, obtaining 
what is called the analytic signal 𝑥𝑥+(𝑡𝑡). To obtain the stationary phasor (the thing most power 
engineers recognize as simply the phasor) one then shifts the frequency spectrum of the 
analytic signal towards the origin by ω. In the time domain, this implies the 
relationship  𝑿𝑿𝑚𝑚(𝑡𝑡) =  𝑥𝑥+(𝑡𝑡) 𝑒𝑒−𝑗𝑗𝜔𝜔𝜈𝜈. If the (constant) frequency term 𝜔𝜔 for constructing the 
phasor quantity is chosen to be around the center of the non-zero support of the power 
spectral density of the original signal (in other words, if 𝜔𝜔 characterizes the signal nicely), then 
the power spectral density of the phasor will have the same profile as that highlighted in the 
box in Figure 19, but centered around the origin. 

                                                      
 
19 A Hilbert transform is a mathematical process that effectively rotates a function in the complex plane, which can 
be used to make negative frequencies positive.  
20 In other words, the recipe contains the same amount of positive and negative contributions at each frequency.  
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In other words, it is possible in principle to produce the analytic signal, or express a function as 
a phasor, for any function (as long as it is real-valued) and any frequency. But the operation 
that maps an arbitrary signal 𝑥𝑥(𝑡𝑡) onto its analytic signal 𝑥𝑥+(𝑡𝑡) requires the implementation of 
the so called Hilbert filter, whose response is non-causal and infinitely long.21  
This calls for an important modification relative to what an actual PMU might do. Since a Hilbert 
filter is non-causal, it cannot be applied to an incoming signal in real-time, because the signal’s 
shape in the future is not known yet.  

  

 

In practice, the analytic signal can still be obtained by what we may call a real (as opposed to an 
ideal) vector analyzer. Instead of a Hilbert filter, a band-pass filter can be used. This makes a 
presumption about the original signal: that it has a narrow frequency support around the 
frequency ω (in other words, it should contain mostly frequencies very similar to ω). In effect, 
we are trading some generality (applicability to arbitrary signals) for the ability to filter the 
signal in real-time, using only information collected through a specific time window up to the 
present.22  

                                                      
 
21 A non-causal filter is one that depends on future inputs, not just the past (which would be causal). The Hilbert 
filter is “omniscient” in the sense of using information from everywhere along the time axis.  
22 The problem of sampling a signal during a finite time window – what statements can be made about the signal 
based on a suitably brief observation – is not trivial. A related but distinct problem is the trade-off between latency 
(speed of reporting) and accuracy of a PMU: given a long time to observe the signal and perform computations, it 
is easier to produce a nice result. These issues will not be further discussed here. 

Figure 20: Application of the Hilbert Filter. On the left side of the diagram, the analytic signal is 
obtained by multiplying the spectrum of the original signal by zero at all negative frequencies 

and one at all positive frequencies. This operation in the time domain is equivalent to the process 
shown on the right side. Here the real part of the analytic signal is equal to the signal itself 

divided by two, while the imaginary part is obtained by filtering the signal through the response 
1/ πt. This is called the Hilbert filter.  (ASU)  
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The practical implementation follows an architecture like the one on the right side of Figure 21, 
which is similar to Figure C.1 of the C37.118.1 standard. The signal is mixed with two carriers in 
quadrature (𝜋𝜋/2 apart), namely cos(𝜔𝜔𝑡𝑡) and – sin (𝜔𝜔𝑡𝑡). The output of the two mixers is sent to 
two low-pass filters (LPF). The LPFs extract the real and imaginary parts of 𝑿𝑿𝑚𝑚(𝑡𝑡), respectively:  
𝐼𝐼(𝑡𝑡) =  𝑋𝑋𝑚𝑚(𝑡𝑡) cos[𝜙𝜙(𝑡𝑡)]  and   𝑄𝑄(𝑡𝑡) =  𝑋𝑋𝑚𝑚(𝑡𝑡) sin[𝜙𝜙(𝑡𝑡)].  

The filtering process described here assumes the signal is non-zero only around ω in the original 
signal. This model implies that we can ignore contributions to the waveform from any 
frequencies very different from the fundamental ω (such as harmonics), and also that the 
fundamental frequency changes only slowly. If and when the frequency changes rapidly, the 
representation of the original signal in terms of a phasor with a certain assumed frequency ω 
becomes problematic.  

Several difficulties might be encountered as a result of a mismatch between the ideal sinusoidal 
model and the real-world signal. For one, there are likely to be harmonics on the signal, and 
there may be inter-harmonics. Another challenge is the accurate expression of Ohm’s law. 
Written in phasor quantities, Ohm’s Law 𝐼𝐼 = 𝑌𝑌𝑌𝑌 only applies to the ideal steady state. While 
voltage and current phasors are still defined in the non-steady state, they may not obey the 
expected relationship. In general, we must consider a circuit’s response using convolution, 
𝑖𝑖(𝑡𝑡) =  𝑦𝑦(𝑡𝑡) ∗ 𝑣𝑣(𝑡𝑡).  If the input phasor (voltage or current) changes smoothly, then its 
relationship with the output phasor (current or voltage) can still be expressed as an algebraic 
equation, with an impedance or admittance that can be evaluated at the center frequency ω. 
But if there are sudden changes in voltage or current, the relationship between these variables 
is not memoryless (i.e. it depends on their history), and even the notion of a time-varying 
impedance can become inadequate. 

In conclusion, the mathematical process of extracting phasors from a signal will produce results 
in any case. It is possible to define a unique phasor to represent a signal, regardless of how well 
this signal conforms to our assumptions. This means that it is possible to stipulate a 
theoretically desired output which PMUs should strive to match in practice, even during non-

Figure 21: Application of a band-pass filter. When the power spectral density of the signal is 
narrowband around the frequency ω=2π fο the extraction of the phasor from the original signal 

can be done through a band-pass filter instead of using the Hilbert filter. The right diagram 
illustrates mixing the signal with two in-quadrature carriers and then using a low-pass filter 

(LPF) to produce the real and imaginary parts of the phasor, 𝐼𝐼(𝑡𝑡) and  𝑄𝑄(𝑡𝑡), respectively. The 
C37.118.1 standard includes two different LPFs, referred to as the P and M filters. (ASU) 
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steady state conditions. But this desired output, the calculated phasor, is itself an abstraction, 
not a real thing. The fact that the mathematical process is well-defined implies nothing about 
whether the resulting phasor happens to be an especially useful abstraction. The results will be 
informative about the real world only to the extent that the real world matches the model 
assumed while creating the abstraction.  

It has been proposed that the phasor measurement problem can be understood as a curve 
fitting problem, in which three parameters (amplitude, frequency and phase) of the presumed 
sine wave are to be estimated from the available sample values.[64] [65]. This viewpoint 
supports the explicit definition of a “goodness of fit” measure, which quantifies how well the 
best sinusoidal characterization actually matches the original signal. PMUs – any PMUs, based 
on any measurement method – could determine and report the “goodness of fit” as a real-time 
quantification on the fit of the implicit “phasor” model. 
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Appendix B: Public Distribution Synchrophasor Efforts and 
Deployments    
This Appendix reflects the authors’ best knowledge at the time of writing and makes no claim of 
completeness. Note that it does not include information about private projects. 

UNITED STATES 

Years Funder Project Team 

2003 - 
present 

DOE Frequency Monitoring Network 
(FNET/GridEye) 

The University of Tennessee, Knoxville, 
Oak Ridge National Laboratory. 

Objective: Develop a low-cost, quickly deployable GPS-synchronized wide-area frequency measurement 
network. This is a pilot WAMS and the first one in distribution level, with over 270 FDRs (the single-phase 
synchrophasor for FNET/GridEye) deployed. Online applications include power system disturbance detection 
and location, oscillation detection and analysis, islanding detection, frequency and phase angle visualization, 
ambient data based modal analysis, FIVDR detection, and harmonics monitoring. There are also several offline 
applications such as model validation, post event analysis, and data analytics. 

Links: http://fnetpublic.utk.edu/, http://powerit.utk.edu/ 

2013 - 2016 DOE ARPA-E Micro-Synchrophasors for 
Distribution Systems 

CIEE, UC Berkeley, LBNL, Power 
Standards Lab with utilities Riverside 
PU, SCE, Southern Co. and others. 

Objective: Develop & test micro-PMU hardware and software, field deployments, explore distribution 
applications, feasibility and data requirements. 

Link: https://arpa-e.energy.gov/sites/default/files/5_CIEE_von%20Meier_GENI3.pdf 

2015 - 2016 * Work came 
out of above 
project 

Open Micro-PMU LBNL Public 
Dataset 
(www.powerdata.lbl.gov) 

LBNL. 

Objective: Produce and make publicly available a real-world micro-PMU data set for research and application 
development. 

Link: https://github.com/lbnl-cybersecurity/lbnl-cybersecurity.github.io/blob/master/LBNL-1006408-Open-
uPMU_IEEE_Oct2016.pdf 

2015 - 2017 DOE  Microgrid Research, 
Development, and System 
Design 

ALSTOM/ General Electric. 

Objective: Research, development and testing of advanced commercial-grade microgrid controllers. 

2015 - 2018 DOE CEDS Supporting Cyber Security of 
Power Distribution Systems by 
Detecting Differences Between 
Real-time Micro-Synchrophasor 
Measurements and Cyber-
Reported SCADA 

LBNL, ASU, EPRI, EnerNex, PSL. 

Objective: Design and implement a measurement network, which can detect and report the resultant impact 
of cyber security attacks on the distribution system network. 

Link: http://crd.lbl.gov/departments/data-science-and-technology/idf/research/ceds-upmu-cyber-security/ 

https://arpa-e.energy.gov/sites/default/files/5_CIEE_von%20Meier_GENI3.pdf
https://github.com/lbnl-cybersecurity/lbnl-cybersecurity.github.io/blob/master/LBNL-1006408-Open-uPMU_IEEE_Oct2016.pdf
https://github.com/lbnl-cybersecurity/lbnl-cybersecurity.github.io/blob/master/LBNL-1006408-Open-uPMU_IEEE_Oct2016.pdf
http://crd.lbl.gov/departments/data-science-and-technology/idf/research/ceds-upmu-cyber-security/
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2016 - 2017 DOE OE's 
Microgrid 
R&D 

Micro-PMUs for advanced 
sensors integration and data 
analytics at the Navy Yard. 

LBNL and PIDC at the Philadelphia Navy 
Yard. 

Objective: Demonstrate advanced analytics and algorithms utilizing micro-PMUs within a true microgrid 
environment. 

Link: https://gig.lbl.gov/news/grid-integration-group-receives-funding-doe 

2016 - 2018 DOE ARPA-E Plus-Up Project (continuation of 
above "Micro-Synchrophasors 
for Distribution Systems") 

CIEE/BECI, UC Berkeley, LBNL and LLNL, 
Doosan GridTech, Smarter Grid 
Solutions, PingThings. 

Objective: Further develop and commercialize early diagnostic applications. 

2016 - 2018 PCARI Resilient Electricity Grids UC Berkeley and University of the 
Philippines, Diliman. 

Objective: Deploy distribution PMUs with Dagupan Electric Cooperative in the Philippines, and demonstrate 
that the micro-PMU system is a cost-effective approach. 

Link: http://pcariofficial.blogspot.com/p/about-us_15.html 

2016  DOE GMLC GMLC 1.2.5 – Sensing & 
Measurement 
Strategy. 

LBNL, LLNL, and others. 

Objective: Develop a cohesive strategy to develop and deploy sensing & measurement technologies for 
developing grid modernization metrics. Leverages micro-PMU advances.  

Link: https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-
gmlc-awards 

2016  DOE GMLC GMLC 1.4.9 - Integrated Multi 
Scale Data Analytics and 
Machine Learning. 

LBNL, LLNL, LANL, NREL, SNL, ANL 

Objective: Multi-scale data analytics for distribution, leverage micro-PMU advances. 

Link: https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-
gmlc-awards 

2016  DOE GMLC Project 4: Project 4: Advanced 
Machine Learning for 
Synchrophasor Technology. 

LANL, BPA, JSIS, OPE Energy 
Corporation, Riverside Public Utilities 

Objective: Develop a suite of new Grid-Modeling aware Machine Learning tools to monitor the transmission 
grid during normal operation and localize frequency events. Use aggregated micro-PMU measurements. 

Link: https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-
gmlc-awards 

2017 - 2018 SENER and 
CONACyT 

Bi-national Laboratory for the 
Intelligent Management of 
Energy Sustainability and 
Technology Education. 

UC Berkeley and ITESM, Universidad 
Tecnologico de Monterrey. 

Objective: Deploy distribution PMUs with Comision Federal de Electricidad (CFE) in Mexico City. 

https://gig.lbl.gov/news/grid-integration-group-receives-funding-doe
http://pcariofficial.blogspot.com/p/about-us_15.html
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
https://energy.gov/under-secretary-science-and-energy/doe-grid-modernization-laboratory-consortium-gmlc-awards
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2017 - 2019  DOE ENERGISE Phasor-Based Control for 
Scalable Solar Photovoltaic 
Integration 

CIEE, UC Berkeley, Doosan GridTech, 
OPAL-RT, GridBright, U Michigan. 

Objective: Develop a new layered control framework for managing extremely high penetrations of solar 
generation and other Variable Energy Resources. 

Link: https://energy.gov/eere/sunshot/funding-opportunity-announcement-enabling-extreme-real-time-grid-
integration-solar 

2017  NASPI Technical Report (NASPI-2017-
TR-001) "Time Synchronization 
in the Electric Power System". 

NASPI Time Synchronization Task 
Force. 

Objective: Identify and articulate what power system engineers and operators need to know about the role 
and emerging importance of high-quality timing sources in routine and mission-critical grid applications. 
Discuss micro-PMU grid application timing requirements. 

Link: https://www.naspi.org/ 

INTERNATIONAL 

2013 - 2017 Swiss National 
Science 
Foundation  

Nano-Tera SmartGrid EPFL-DESL & LCA2 

Objective: Produce and make publicly available a real-world micro-PMU data set for research and application 
development. First live demonstration of real-time (low latency, 20 ms refresh rate) state-estimation in a real-
scale MV distribution grid, using advanced PMUs, PDC and state estimation processes developed by EPFL 
researchers. 

Links:  
• https://smartgrid.epfl.ch 
• https://infoscience.epfl.ch/record/203775 
2012 - 2016 FP7-ICT (EU) C-DAX: Cyber-secure Data and 

Control Cloud for Power Grids 
Alcatel Lucent, iMinds, EPFL, EKUT, 
Radboud University Nijmegen, Liander, 
National Instruments, UCL, University 
of Surrey. 

Objective: C-DAX is a Cyber-secure DAta and Control Cloud for future power distribution networks based on 
an information-centric networking (ICN) architecture. C-DAX was validated in a distribution grid of Alliander 
(Dutch DSO), to demonstrate that the use of PMUs in combination with C-DAX and a public LTE network can 
help operators to better manage their grids by providing real-time situational awareness in a cost-efficient 
way. 

Links:  
• http://www.cordis.europa.eu/project/rcn/106390_en.html 
• https://infoscience.epfl.ch/record/222877 
2014 - 2017 Swiss Federal 

Office of 
Energy (SFOE) 

Real-time state estimation of 
the Lausanne 125 kV sub-
transmission network using 
PMUs 

EPFL-DESL, Services industriels de 
Lausanne (SiL), National Instruments 

Objective: validation of PMU-based real-time state estimation in the 125 kV sub-transmission grid of the city 
of Lausanne and demonstration of its capability to support hard real-time applications, such as power-system 
protections. Validation of a PMU-based fault location technique. 

https://energy.gov/eere/sunshot/funding-opportunity-announcement-enabling-extreme-real-time-grid-integration-solar
https://energy.gov/eere/sunshot/funding-opportunity-announcement-enabling-extreme-real-time-grid-integration-solar
https://www.naspi.org/
https://smartgrid.epfl.ch/
https://infoscience.epfl.ch/record/203775
http://www.cordis.europa.eu/project/rcn/106390_en.html
https://infoscience.epfl.ch/record/222877
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