<Project Name>: System Architecture

Authors:

Document Control

	Version
	

	Date
	

	Project Manager
	

	Technical Lead
	

Table of Contents

1<Project Name>: System Architecture

11
Project Context

12
Architecture Requirements

12.1
Overview of Key Objectives

12.2
Architecture Use Cases

22.3
Stakeholder Architectural Requirements

32.4
Constraints

32.5
Non-functional Requirements

43
Solution

43.1
Relevant Architectural Patterns

43.2
Architecture – Structural View

43.3
Architecture – Dynamic View

53.4
Implementation Strategy

53.5
Architecture Analysis

63.6
Risks

1 Project Context

· Describe the context for the work. For most projects, this will be one or two sentences, describing the customer, the purpose, and the intended product.

· If the context is described elsewhere, reference these relevant documents (e.g., Requirements, Project Statement of Work, etc), and simply provide enough for the reader to get a flavor for the external context of the work.
Examples:
The XYZ project is designed for use by the ABC client as a data harvester and formatter. The intended product of this phase is a proof-of-concept prototype that must be extensible should the client provide further funding.

The KB project will produce a production application for LOA Corp. The LOADoIT application must provide a multi-user distributed platform that enables users to collaborate while undertaking their design work. The detailed project requirements are described in reference [1].

2 Architecture Requirements

2.1 Overview of Key Objectives

Briefly list the major things the project must do from an architectural perspective. These are typically platform-level and/or non-functional requirements, not the user requirements (the architectural requirements facilitate and support the user requirements). Only list important things that must be achieved – the things that will be necessary to make the project a success.

Examples:

The YADA architecture must provide an integration service for the client projects to exchange information, with the following major requirements:

· Information exchanges must take place within 10 seconds, or the sender of the data must be informed of the delay.

· The architecture must not allow data to be lost during exchange.

· There must be no single point of failure.

· The clients must have a Java-based interface to the architecture.

· It must be possible to upgrade the integration layer without changing the programming interface.
2.2 Architecture Use Cases

Describe the use cases identified for the architecture that will drive its design and validation. Formal Unified Modeling Language (UML) use case diagrams are a good technique, or just describe the steps in the use cases in sufficient detail so that they are clear and as unambiguous as possible. Use cases are an excellent source of test cases, and hence should be described where possible in a way that they are testable.

Examples:

Exchange a message:

1. Sender submits message.
2. Message broker looks up message format.
3. Broker looks up destination and message formats it accepts.
a. If no destination format and defined transformation exist, an exception is returned to the sender.
4. Broker applies a defined message transformation from source to destination formats.
5. Broker sends message to destination.
6. Destination retrieves message.
Scalability:

1. A single user submits a WHUMF query to the database.
2. Results are returned in under 3 seconds.
3. 10 simultaneous users submit WHUMF queries to the database.
4. No exceptions occur, and all results are returned in less than 10 seconds.
Modifiability - Location Transparency:

1. The HIPPI data store is moved from one machine to another.
2. No changes are required in the HIPPI application code.
2.3 Stakeholder Architectural Requirements

Describe the requirements for the architecture from the perspective of the different stakeholders. Typically, the two main stakeholders are the users/clients (of which there may be several different types, e.g., administrators, managers, etc.), and the development team. Others may be the funding agency (if distinct from the actual users), other internal development groups (e.g., for reuse purposes), external development teams who will use/extend the architecture, and so on.

Examples:
External development teams:

1. Must be able to add new execution modules without rebuilding the DOPEY application.
2. Must be able to turn on/off message logging through application configuration.
3. C++ and Java clients must be supported.
Development Team:

1. Must be able to move from a single user deployment to a distributed deployment without modifying any application code.
2. The internal database structure should not be exposed to programmers through the API, so that the schema can be modified without necessitating changes to the client programs.

3. The application must be able to exploit additional processors added to improve performance (scale up), in as linear fashion as possible.

Applications Administrators:

1. Administrative tools must be accessible through a web browser.
2. Internal performance statistics must be logged to a text file.
2.4 Constraints

If Constraints are addressed in the Requirements Specification, you may simply reference that document here.
Describe non-negotiable aspects of the project that will guide architectural choices. These are often concerned with legacy or environmental issues.

Examples:

The BG database v2.0 must be used.

The application must run in a web browser on the client machine.

The existing naming and directory infrastructure must be used for locating organizational resources.

A PKI security infrastructure must be incorporated.
2.5 Non-functional Requirements

If non-functional requirements are addressed in the Requirements Specification, you may simply reference that document here.
Examples

Performance:

Reliability:

Simplicity:

Scalability:

Solution

2.6 Relevant Architectural Patterns

Simply list the relevant architectural patterns that are used, e.g.:

Layered

N-tier

Publish-subscribe
Service façade

2.7 Architecture – Structural View

Describe the structure of the architecture. This view should identify the major software components in the architecture and the structural relationships between them. It’s a static view of the software.

Some issues to consider are outlined below. Not all of these must be shown for any given architecture, and it’s often easier to show each “view” in a separate diagram:

Component decomposition: Describe how components are decomposed into subsystems, giving a top-down view of the architecture. For example, show the sub-packages and/or classes that comprise a UML package, or show the decomposition of class using aggregation.

Dependencies: Show the dependencies between components. A dependency exists if the correct implementation of a component is dependent upon the implementation of other components. For example, a GUI component is dependent upon a data persistence component for its data storage. In UML, dependencies are shown using associations, aggregations, and dependency notations.

Generalization: Show the major inheritance/generalization relationships between components. These are typical in object-oriented designs and depicted in UML using the inheritance notation.

Layers: Describe any layers in your architecture. Layers are useful for insulating “higher” level functions from “lower” level functions by introducing intermediate abstraction layers. For example, a GUI layer may use an abstract persistence layer that makes calls to the underlying database. This insulates the GUI code from the database API.

Describe these structural views of the architecture using any convenient form. UML is useful, and simple “box and arrow” diagrams work well, as long as there is a key to symbols used. Use text where necessary to make the design absolutely clear.

2.8 Architecture – Dynamic View

Describe the run-time behavior of the components in the architecture. This helps facilitate subsequent analysis of the architecture. The principal items to describe are the ways in which the components in the system interoperate and communicate. Probably the easiest ways to do this is to use either text or UML interaction diagrams to depict typical message flows.

Common interaction styles are:

Shared data: Components in the application may share data stores. Describe how the data are shared, whether multiple concurrent accesses are supported, and what operations are possible. Do the components access the shared data directly or do they use a communications mechanism?

Client-Server: Some components may act as servers, servicing one or more client requests in a synchronous or asynchronous manner. Describe how the clients establish communication and interact with the servers, whether servers are centralized, replicated, distributed, and/or shared.

Peer-to-peer: Components can communicate directly with any others, typically in a request-reply style. Components act simultaneously as clients and servers for each other. Describe the communications mechanisms, concurrency issues, component replication, distribution, and discovery mechanisms.

Publish-Subscribe: Event-driven architectures typically operate in a publish-subscribe manner. Describe how the components communicate (one-to-many, many-to-many, etc.), whether the event mechanism supports distributed components.

Asynchronous: Components communicate via a one-way asynchronous communications mechanism. Senders do not wait for a message to be received and processed. Describe how message are sent, buffered and received, and what type of communication mechanism is used.

2.9 Implementation Strategy

Describe the planned implementation strategy in terms of the components that will be built and commercial off-the-shelf (COTS) components or open source software that will be used. If the decision to buy or build is an important one for the application, briefly discuss the trade-offs involved. Also state languages to be used for each major architectural piece.

Examples:
The BG1 application will be built using Java and the facilities in the Java 1.4 SDK.

Web browser clients will receive HTML only. The Web Server will implement servlets that use Enterprise Java Beans to access the database through JDBC. The JBoss open source J2EE application server will be used.

In order to easily integrate with the existing infrastructure, the application interfaces will be built as Web Services running on Microsoft’s IIS engine. The Web Services will be implemented in a mixture of VB.NET and C#.

2.10 Architecture Analysis

The aim here is to be explicit about how the architectural decisions described above affect possible changes in requirements, environment, or business circumstances. Try to anticipate changes that may occur once the initial version of the application is deployed, and analyze these changes in terms of how the architecture can (or cannot) accommodate them. Be explicit if the change will be hard or impossible to handle – that’s the point. It makes it clear what the application is designed to do, ways that it can sensibly evolve in the future, and ways which will cost a lot of money!

Examples:
Deploy FDR software with multiple users: The application has been designed to be single user. If it were needed to support multiple simultaneous users, then… (describe what needs to be done).

Deploy FDR software in a distributed fashion: As the architecture is designed to execute in a single process, distributing any components will require extensive architectural changes, effort, and funding.

Modify GB database schema: Changes to the schema are contained with the DataManager component. Additions to the database will cause the interface of the DataManager to evolve, but this can be done in a way that doesn’t break existing application code.

Change COTS Vendor: As long as we adhere to J2EE standards, it should be possible to change J2EE vendor with minimum efforts and no code or architecture changes.

2.11 Risks

Describe the known risks for the project, their mitigation strategies, and the potential level of impact on the project (low/medium/high). These typically feed in to and are managed in the Project Management Plan.

Examples:
Table 1 - Risks

	Risk
	Mitigation Strategy
	Level

	Concrete requirements are not readily available from the client and are unlikely to be available before project commencement.

	Keep initial architecture simple and easily extensible. When further concrete use cases are identified, extend the functionality where needed with features to accommodate new requirements.
	High

	The quality of the COTS server components is not tested.
	Develop early proof-of-technology prototypes that test and validate the components.
	Medium

	The development team is not experienced with PKI technology.
	Hire a consultant to mentor the relevant team members in the initial design and proof-of-concept implementation.
	Low

