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1 Introduction  
Power system models could be categorized into different types using different criteria [1]. Based 
on the scope of system to be modeled, there are device-level models and system-level models. The 
former describes the behavior of a single asset or device in the power system, such as governor or 
hydro-generator, while the latter describes interactive behavior of the electric network formed by 
multiple electrical assets including generators, transmission, and loads. Based on the time scale 
that the models characterize, they can be divided into static or steady-state models and dynamic or 
transient models. The former describes the slower or steady state behavior of the system such as 
power flow and generator economic dispatch. The latter describes the faster, transient system 
behavior such as frequency regulation, voltage excursion, line trip and Remedial Action Scheme 
(RAS) activation.  

The power grid is like a living creature as it keeps adapting to the extreme weather, human 
activities and its own health degradation [2]. The interconnected and fast transient nature of the 
power grid requires that its planning, operation, and maintenance rely heavily on mathematical 
models, which should reflect the significant characteristics of the real power asset and system. 
Even though power grid algorithms and toolsets have become more and more sophisticated and 
smart, their effectiveness can only be as good as the mathematical model of the power system and 
power asset. Ensuring a verified and up-to-date power asset model for generator, excitation system, 
governor and other control system is essential for reliable power system planning and operation 
studies. 

One popular way to verify and validate the power system models is to use synchrophasor data 
from Phasor Measurement Units (PMUs). Compared to traditional Supervisory Control and Data 
Acquisition (SCADA) system, the PMU measurement provides unprecedented observability to the 
power grid with 100 times faster reporting rate and unique synchronized view of the power system 
dynamic state including phase angles. These unique features of PMU measurement together with 
the available grid disturbance data enable a low-cost solution to validate and calibrate the power 
system models. Although there are many other ways to conduct model validation and calibration 
(MVC), this white paper will focus on power system MVC using disturbance data captured by 
PMU or high frequency disturbance recorders.  

This white paper, as a continual effort of prior art [1], intends to capture recent development and 
the latest lessons learned as the industry moves forward. Although there are various models, 
including static and dynamic models for generators, transmission lines, transformers, HVDCs, 
short circuit models, etc., this white paper primarily focus on the generator dynamic models, due 
to well-established mandates from reliability standards relevant to many power grid entities. 
However, the challenges and developed technical framework may be transferable to other power 
system assets and system validation applications.  

1.1 Motivation for Model Validation & Calibration  
Models are the foundation of virtually all power system studies. Calculation of operating limits, 
planning studies for assessment of new generation and load growth, performance assessments of 
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system integrity protection schemes (SIPS) – all these studies depend on an approximate 
mathematical representation of the transmission, generation, and load [3].  

Although many prior arts have elaborated the importance of validating and calibrating power 
system models [1], the values of MVC can be best demonstrated by facilitating compliance with 
the four MOD Standards released and mandated by the North American Electric Reliability 
Corporation (NERC) for more reliable power grid planning.  Table 1.1 summarizes each NERC 
MOD standard including its model validation focus, suggested model validation method, related 
functional entities, and mandated model validation interval. It is evident that MOD-026-1 [5] and 
MOD-027-1 [6] focus on generator model validation while MOD-032-1 [7] in conjunction with 
MOD-033-1 [8] validate the interconnected transmission system model. 

For both MOD-026-1 and MOD-027-1, The Generator Owner (GO) of a generation unit larger 
than 100 MVA (East), 75 MVA (West), or 50 MVA (ERCOT) must provide “a verified generator 
model, including documentation and data,” to its Transmission Planner every 10 years, and update 
these models if there are any changes to the plant controls that change the plant’s response 
characteristics. The GO owns the model validation effort, and the Transmission Planner (TP) shall 
decide whether the provided model is “usable” or not. Therefore, both GO and TP may need to 
conduct model validation process. The GO may primarily leverage staged tests which take the 
generator offline, and the TP may leverage grid disturbances to conduct the model validation. The 
difference between MOD-026-1 and MOD-027-1 lies in the model validation focus. MOD-026-1 
focuses on validating the generator voltage and reactive power response, while MOD-027-1 
focuses on validating the generator frequency and active power response. 

MOD-032-1 in conjunction with MOD-033-1 intends to validate the interconnected transmission 
system model, with a two-step approach. The first step, as described in MOD-032-1, develops the 
power system modeling data requirement by the Planning Coordinator (PC) and its Transmission 
Planner (TP). Accordingly, those modeling data shall be provided every 13 months by Balancing 
Authority (BA), GO, Load Serving Entity (LSE), Resource Planner (RP), Transmission Owner 
(TO), and Transmission Service Provider (TSP). As the second step, the PC shall validate the 
power system model using the disturbance or “dynamic local event” data provided by the 
Reliability Coordinator (RC) and Transmission Operators (TO), at least once every 24 months.  
Those who are interested in the role of the different entities mentioned above could refer to the 
reliability functional model defined by NERC [9]. 

Besides power grid planning, an accurate dynamic power system model with better stability 
margin would enable higher asset utilization. For stability constrained corridors, more accurate 
calculation of system operating limits can unlock latent capacity across transmission corridors. A 
study in the British grid identified a transient stability limit in the corridor between Scotland and 
England, with 1.5GW of wind generation connected between the centers of inertia. The study 
indicates that a definition of the limit by angle difference can enable 10–12% uplift in the corridor 
transfer during high wind conditions when the capacity is most valuable [11]. 
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Table 1.1 NERC MOD Standards Relevant to Power Grid MVC. 

NERC 
Standards Validation Focus Validation 

Method  Entities Interval 

MOD-
026-1 

Validate generator 
voltage and 

reactive power 
response 

Staged test (for 
GO) and POI 

disturbance-based 
model validation 

(for TP) 

TP,        
GO 

Every 10 year or 
significant changes to 
the plant that modify 

its response capability 

MOD-
027-1 

Validate generator 
frequency and 
active power 

response 

Staged test (for 
GO) and POI 

disturbance-based 
model validation 

(for TP) 

TP,        
GO 

Every 10 year or 
significant changes to 
the plant that modify 

its response capability 

MOD-
032-1 

Interconnected 
transmission 
system model 

NA 

PC, TP, 
BA, GO, 
LSE, RP, 
TO, TSP  

Every 13 calendar 
months 

MOD-
033-1 

Interconnected 
transmission 
system model 

disturbance based 
model validation 

(for PC) 

PC,        
RC, TO 

Every 24 calendar 
months 

 

1.2 Power System Model Validation Overview 
Over the past years, several methods have been developed to facilitate power asset model 
validation and calibration. They can be classified into two major categories: intrusive based 
approach and non-intrusive based approach. 

Generator model validation using staged tests is a well-established intrusive based approach as the 
generator needs to be taken offline from normal operation for a series of predefined tests. Typical 
stage tests include a generator test (to determine machine reactance and time constants), an exciter 
test (to determine exciter gains, time constants, limiter function, etc.), a governor test (to determine 
time constants, speed droop settings, etc.), a PSS test, and/or a reactive power capability test [12]. 
After all field tests are complete, model validation is conducted based on the field measurements 
using mathematical techniques. Staged tests are the most direct way to extract the desired model 
parameters and are very simple and time efficient. The major disadvantage of this method is its 
high cost, e.g., $15,000-$35,000 per generator per test in the United State [13]. 
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A complimentary approach to the staged tests is to leverage the various types of disturbances 
across locations in the power system along with large installed base of PMUs. These disturbance-
based model validation approaches are non-intrusive compared to the staged tests. As highlighted 
in [1], PMU data recorded during grid disturbances captures the underlying relationships among 
various grid assets more accurately than stand-alone stage testing of individual assets where it is 
not feasible to replicate the same grid disturbance. Therefore, a grid disturbance driven model 
validation process can result in more accurate representation of the asset of interest during real 
system events. This makes it possible to monitor and validate the dynamic models of the generators 
frequently at different operating conditions so that they can stay updated, even after the model 
validation with the staged tests [14].  

Fig. 1-1 shows the general overview of the disturbance-based model validation using PMU data, 
which is adopted by most available state-of-the-art methods and toolsets. The high-level process 
can be described in the following steps [15]: 

1. Data Preparation: Obtain the grid disturbance data, typically PMU data from the point of 
interconnection or a nearby location close to the generator. The PMU data may comprise 
of voltage magnitude, frequency or phase angle, active power and reactive power. Also, 
the dynamic model files for the asset and the network model for subsystem creation is 
collected. 

2. Model Verification: The PMU measurements such as voltage magnitude and frequency (or 
phase angle), are injected into the network while running a dynamic simulation engine in 
an ‘event playback’ mode. The simulation outputs, including active and reactive power 
from the power plant, will be compared against the corresponding PMU measurements. If 
the difference between simulated response and measured response is sufficiently small, the 
model accuracy is good, and parameter calibration is not needed.  Otherwise, the model 
calibration process is invoked. 

3. Model Calibration: Based on event data mining, the most sensitive parameters will be down 
selected and tuned so that the difference between simulated response and measured 
response gets closer. Since this searching process is inherently nonlinear, it may take 
multiple iterations before a good solution (model parameter values) is found that makes 
the simulation output match the measurements. A robust model will have a good match 
against multiple events with the same asset parameters and will ultimately deliver better 
predictions of the plant’s response over a wide range of grid events. 
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Figure 1-1: General Process of Model Validation and Calibration 

 

1.3 State-of-the-Art Toolsets  
Most dynamic simulation engines such as GE PSLF, Siemens PTI PSS/E, PowerTech’s TSAT 

and PowerWorld Simulator are equipped with standard IEEE model library and playback 
simulation capability for model validation. Once significant model discrepancy is observed, there 
is a need to identify and calibrate the incorrect parameters. Production grade model calibration 
software have been developed in recent years, including Power Plant Parameter Derivation (PPPD) 
by EPRI [17][18][19], Power Plant Model Validation (PPMV) by BPA/ 
PNNL[20][21][22][23][24], Phasor Grid Dynamics Analyzer (PGDA) by EPG [25] 
[26][27][28][29][30], model calibration toolbox by MathWorks [25] and GE’s Model Validation 
& Calibration Module in PhasorAnalytics [31][32]. A summary of these toolsets is found in Table 
1.2. 
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Table 1.2 State-of-the-Art Model Validation and Calibration Toolset. 

Toolset Name Vendor 
Simulation 
Engine Model Validation Model Calibration Users 

Power Plant Parameter 
Derivation Tool (PPPD) 

Electric Power 
Research 
Institute (EPRI) 

Simulink 
model 

Playback to perform 
visual inspections and 
comparisons between 
the model and 
measured data. 

User selects initial models and 
parameter bounds. 

MISO, NYISO, 
PJM, and 20+ 
more users 

Power Plant Model 
Validation Tool (PPMV) BPA/PNNL PSLF, PSSE Same as above 

Automatically identify the 
sensitive parameters for user 
review, and then perform 
Kalman filtering based 
calibration to fine tune the 
user selected model 
parameters.  

BPA, PG&E 

Model-Based Calibration 
Toolbox MathWorks Simulink 

model Same as above Support multiple events-based 
model calibration. ERCOT, PG&E 

Phasor Grid Dynamics 
Analyzer (PGDA) 

Electric Power 
Group PSSE 

Playback to perform 
visual inspections and 
comparisons between 
the model and 
measured data. 
Automatic report 
generation.  

Automatically identify the 
sensitive parameters for user 
review, and then use 
Simultaneous Perturbation 
Stochastic Approximation 
Particle Swarm Optimization 
algorithm to fine tune the user 
selected model parameters.  

MISO 

PhasorAnalytics (PA) General 
Electric PSLF, TSAT 

Playback to perform 
visual inspections and 
comparisons between 
the model and 
measured data for 
multiple events 

Automatically identify the 
sensitive parameters for user 
review, and then perform 
optimization-based calibration 
to fine tune the user selected 
model parameters. Support 
multiple events-based model 
calibration. 

FPL, NG, 
ISONE, PG&E 
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1.3.1 Power Plant Parameter Derivation (PPPD) 
 

The power plant parameter derivation (PPPD) tool is a MATLAB® based tool developed by 
EPRI [16]. The PPPD tool is widely used by EPRI members to validate and tune parameters of 
positive sequence models of synchronous generation plants, wind and photovoltaic (PV) plants, 
and static var systems (SVS). Specifically, the tool can validate: 

● The synchronous generator and its inertia constant 

● The excitation system including the power system stabilizer model 

● The turbine-governor 

● Type 3 (double fed induction machine) and Type 4 (permanent magnet synchronous 
generator) wind plants 

● PV power plants, and 

● Static var devices like SVCs and Statcoms. 

PPPD can be used for validating models both based on staged field-testing data or online 
recorded event measurement data. It is however recommended that if an event data is used, a good 
baseline parameter set for the model being verified is already available.  

For validating or tuning the parameters of a power system equipment, the relevant terminal 
quantities are obtained from a digital fault recorder (DFR) or a PMU. DFR measurements have a 
higher resolution as compared to PMUs but are only available if an event triggers the DFR. PMU 
measurements on the other hand are continuously available and hence these measurements can be 
conveniently leveraged when electrically distant disturbances are not sufficient to trigger a local 
DFR. PMU data however is heavily filtered, but this data can still be used to validate certain 
aspects of positive sequence models.  It should however be noted that the measurements from DFR 
or PMU should be obtained from a device local to equipment being validated and that the measured 
quantities are the terminal quantities. Remote measurement is typically not suited for unit 
validation as these will be contaminated by responses from other electrically close equipment. An 
example of terminal quantities for a synchronous machine model validation are terminal voltage, 
active and reactive power, speed, and field voltages and current. Many DFRs can already provide 
positive sequence values of voltages as well as active and reactive power measurements. However, 
if the positive sequence values are not available, the raw sinusoidal measurements should be 
converted to the relevant positive sequence quantities by using standard signal processing 
techniques.  

An example of a generator model validation is shown next. In the validation process of the 
generator model the problem may be formulated by using a standard sixth order synchronous 
generator model like the GENROU or the GENTPJ model. The inputs for the generator validation 
process are the field voltage (Efd), the stator currents (Id and Iq) and the shaft speed (ω). The output 
of the model, the stator voltage (Vt) and the field current (Ifd) are then compared to the 
corresponding measured values to derive the parameter set. To start the process the model is first 
initialized using the vector 
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𝑦𝑦0 = [𝑃𝑃0,𝑄𝑄0,𝑉𝑉0 ,𝜔𝜔0] (1) 

Once initialized the input quantities given by the vector 

𝑢𝑢 = �𝐸𝐸𝑓𝑓𝑓𝑓 , 𝐼𝐼𝑑𝑑 , 𝐼𝐼𝑞𝑞,𝜔𝜔� (2) 

are used to solve the differential-algebraic equations given by 

𝜑̇𝜑 = 𝑔𝑔(𝜑𝜑, 𝑥𝑥,𝑢𝑢) (3) 
𝑧𝑧 = 𝑓𝑓(𝜑𝜑, 𝑥𝑥,𝑢𝑢) 

where the vector, 

𝑥𝑥 = �𝑋𝑋𝑑𝑑,𝑋𝑋𝑑𝑑′ ,𝑋𝑋𝑑𝑑′′,𝑋𝑋𝑞𝑞,𝑋𝑋𝑞𝑞′ ,𝑋𝑋𝑙𝑙 ,𝑇𝑇𝑑𝑑0′ ,𝑇𝑇𝑑𝑑0′′ ,𝑇𝑇𝑞𝑞0′′ ,𝑆𝑆10,𝑆𝑆12  � (4) 

is the set of parameters to be tuned (the notations in the vector x have usual meaning) and the state 
variables are given by the vector, 

𝜑𝜑 = �𝛹𝛹𝑑𝑑′′,𝛹𝛹𝑑𝑑𝑑𝑑′′ ,𝛹𝛹𝑓𝑓𝑓𝑓 ,𝛹𝛹𝑘𝑘𝑘𝑘  ,𝛹𝛹𝑓𝑓𝑓𝑓,𝛹𝛹𝑘𝑘𝑘𝑘 , 𝛿𝛿, 𝐼𝐼𝑓𝑓𝑓𝑓� (5) 

where the notations have the usual meanings. 

As described earlier, the model output  

𝑧𝑧 = �𝑉𝑉𝑡𝑡 , 𝐼𝐼𝑓𝑓𝑓𝑓� (6) 

is then compared to the measurement and an error vector given by  

∆𝑧𝑧 = �∆𝑉𝑉𝑡𝑡 ,∆𝐼𝐼𝑓𝑓𝑓𝑓�  

is computed. The parameter tuning is then framed as a nonlinear least squares optimization 
problem  

𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥  ∆𝑧𝑧𝑡𝑡∆𝑧𝑧 (7) 

given, 𝑥𝑥𝑙𝑙𝑙𝑙 ≤  𝑥𝑥 ≤  𝑥𝑥𝑢𝑢𝑢𝑢 where xlb and xub are the upper and lower limits on the parameters. Note 
that engineering judgement should be exercised to select the upper and lower limits on the 
parameters such that the optimization problem in (7) is tractable. Several standard methods are 
conveniently available in commercial as well as open-source packages to solve (7). The 
FMINCON routine in Matlab® is leveraged in PPPD to solve (7) and attain the tuned parameter 
set x. 

As mentioned earlier PPPD has been used extensively by EPRI members for model validation 
and parameter tuning. A list of users is given at Table 1.3. A few examples of synchronous machine 
plant model validation can be found in [17][18][19].  
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Table 1.3 PPPD users 

Ameren Arkansas Electric Cooperative 
(AECC) 

Associated Electric Cooperative 
(AECI) 

Tri-State Saudi Electric Company LGE & KU 

BC Hydro CenterPoint Energy Dominion Energy 

Duke Energy ERCOT Entergy 

FirstEnergy Great River Energy ISO New England 

Korea Electric 
Power 

New York Power Authority NRG Energy 

Arizona Public 
Service (Pinnacle 

West Capital 
Cooperation) 

Southern Company Southwest Power Pool (SPP) 

Tennessee Valley 
Authority (TVA) 

WEC Energy Group Xcel Energy 

Bonneville Power 
Administration 

(BPA) 

American Electric Power (AEP)  

 

1.3.2 Power Plant Model Validation Tool (PPMV) 
 

The PPMV tool is an open-source standalone Windows application. It automates the power 
plant model validation process based on disturbance recordings. The tool was developed by Pacific 
Northwest National Laboratory (PNNL) in collaboration with Bonneville Power Administration 
(BPA). The tool development was funded by the US Department of Energy (DOE) through the 
Grid Modernization Laboratory Consortium (GMLC) program and by BPA through the 
Technology Innovation program. 

The overall PPMV tool structure is shown in Fig 1-2. The tool supports different data sources 
commonly used by electrical companies to store PMU measurements including OSIsoft PI 
database, BPA PDAT, COMTRADE, and CSV formats. The PPMV tool stores historical 
disturbance information in the events database. The tool also includes the xml-based database of 
power plants (mapping power plants with corresponding PMU and SCADA measurement signals) 
and the database of model validation results. To perform the model validation, the PPMV tool 
interacts with an external Play-In module. The current version of PPMV tool supports GE PSLF 
and Siemens/PTI PSS®E Play-In functions. Interaction between the PPMV application and PSLF 
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is performed through Engineering Process Control Language (EPCL) scripts and with PSS®E 
through Python scripts. 

The tool also has built-in advanced visualization and automatic reporting capabilities. A 
screenshot of the PPMV tool’s main graphical user interface (GUI) is shown is Fig. 1-3. Using the 
GUI, the user can view existing model validation studies or can create a new model validation 
project. After the user selects required events and plants, the PPMV tool will interact with PSLF 
or PSS®E through scripting language to perform the model validation [22][23].  

The validation process consists of three major stages: (1) Mini state estimation to match the 
initial power flow conditions; (2) Model Validation run using Play-In function; and (3) Information 
extraction from the PSLF/ PSS®E channel files. The PPMV tool also has capabilities to perform 
sensitivity studies and interact with external model calibration models. The tool was integrated 
with a PNNL-developed external model calibration solver based on Kalman filter approach. 

 

 
Figure 1-2. PPMV tool overall framework. 
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Figure 1-3. PPMV tool main GUI. 

1.3.3 Power Plant Model Validation Simscape Design Solution 
 
The Power Plant Model Validation Simscape Design Solution is a tool provided by MathWorks 

and is available for download from MathWorks File Exchange at the following link [25]. 

The Power Plant Model Validation Simscape Design Solution demonstrates power plant model 
validation as applied to online performance monitoring of grid events using phasor measurement 
unit (PMU) data, through a workflow that includes both manual adjustments and automated 
techniques. Both gas plant and steam plant reference examples are included.  

The following MathWorks products are required to run the tool: 

• MATLAB® 
• Simulink® 
• Control System ToolboxTM 
• Optimization ToolboxTM 
• SimscapeTM 
• Simscape ElectricalTM 
• Simulink Control DesignTM 
• Simulink Design OptimizationTM 
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The Power Plant Model Validation Simscape Design Solution provides a versatile 
computational platform that includes: 

• Flexible data import 
• Data pre-processing 
• Power plant simulation with support for online-disturbance data replay (provided as 

reference examples) and staged-event (with model modification) 
• Support for assessing multiple events simultaneously 
• Support for different data replay paradigms – i.e. VF, PQ 
• Support for manual parameter adjustment 
• Support for automated parameter adjustment 

A getting started slide deck is included with the download of the Power Plant Model Validation 
Simscape Design Solution that provides step-by-step information on using the provided reference 
examples. 

1.3.4 Generator Model Validation (GMV) 
 

GMV (Generator Model Validation) uses synchrophasor data to validate and calibrate 
generator, excitation system and turbine control system models. PMU data along with the power 
flow and dynamic data for the generator is then used to validate the model and generate a report 
that compares simulated data with PMU data. GMV provides an automated report that identifies 
whether the model accurately represents the response of the generator and control system to 
different events and disturbances. Furthermore, sensitivity analysis can be performed to identify 
key parameters that should be considered for tuning when the model response does not match the 
actual response. The sensitivity analysis results quantify the change in the generator response for 
change in each parameter. This helps in identifying parameters in the model that have the most 
impact on the generator response and narrows down from several parameters to a few for fine 
tuning and calibration. For each event, multiple generating units can be validated if PMU data is 
available from the individual generating units. GMV can also use DFR point on wave data as input 
and convert it to phasor data for model validation. This application can be installed locally at the 
generating station or in a central location such as control center which can collect data from 
multiple generators at different locations. Fig. 1-4. shows overview of data flow and methodology 
for GMV.   
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Figure 1-4. Automated Process for Generator Model Validation (GMV) 

 
Key Features include: 

● Validate generator models for multiple events  
● Validate all types of conventional generating units - Hydro, Nuclear, Combined Cycle, 

Other Steam & Gas Turbine Generators  
● Validate renewable energy resources - Solar, Wind etc. (Planned) 
● Validate multiple generators simultaneously 
● Automatically Quantify mismatch and identify good vs questionable models 
● Perform detailed analysis offline  
● Sensitivity analysis to help identify key parameters 
● Perform calibration and tuning 
● Automated report generation and email notification  
● Help meet NERC MOD-26, MOD-27 Compliance 

GMV was first developed for use at ERCOT as part of CCET project in 2014. EPG has used 
GMV to perform model validation and calibration studies for TVA. GMV has also been procured 
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by ComEd and planned for future use. EPG has performed demonstration using GMV for PJM 
and currently in process for installation and commissioning at PJM.  

EPG’s Phasor Grid Dynamics Analyzer (PGDA) application is designed for offline analysis 
using data from various sources such as PMUs, DFRs, simulations etc. Analysis includes 
oscillation analysis, event analysis, fault analysis, statistical baselining analysis, frequency 
response analysis, system model validation etc.  PGDA integrates with GMV and can perform 
further analysis of events and model validation results. PGDA is used by several ISOs and Utilities 
including ERCOT, PJM, NYISO, SPP, ComEd etc. 

More information on GMV can be obtained from references [26]. 

1.3.5 PhasorAnalytics Dynamic Model Validation & Calibration 
 

GE’s Model Validation & Calibration improves models to meet emerging NERC requirements. 
WAMS data and DFR data measure equipment’s response to system event or disturbance [31]. 
Event data are played back to selected dynamic models and the models’ response will be 
benchmarked against actual equipment’s response. Validated and calibrated dynamic models 
provide confidence to system planners and operators about the quality of the models and outcome 
of security simulations. Furthermore, the Event Library allows users exam historical events and 
perform multi-event model calibration. Model Validation & Calibration is compatible with 
industry standard models (PSLF, TSAT and PSS/E). 

 
Figure 1-5. GE’s MVC Module in PhasorAnalytics 

 

The Key features of GE’s MVC comprise of: 

• Compliance oriented study. 
• Support multiple data sources. 
• User friendly event library. 
• Interactive user-interface design. 
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• Generic compatibility across multiple time-domain simulation models and engines. 
• PMU PDC and DFR agnostic. 
• Calibration of models in one-click. 
• Optimization across multiple events. 

The Key Outcome of GE’s MVC module comprise of: 

• Reliability standards Compliance. 
• Sanity check dynamic models. 
• Reduce model deficiency. 
• Dynamic models tuning. 
• Increase renewables penetration by assuring models quality. 
• Realization of Digital Twin of physical equipment. 

1.4 Present Limitations 
Even though significant efforts have been made to streamline the model validation and 

calibration process, some gaps are identified for its wide adoption in the industry: 

1. Systematic performance metrics for model validation and calibration: The current 
performance metrics primarily focus on “curve fitting” to the measured active power and 
reactive power time series data. There is a need to enrich the performance metrics to 
determine to what extent the model represents the actual process. 

2. Automatic grid event selection algorithm and data processing: Engineers have disclosed the 
challenge to manage large amounts of grid events and how to down select them with more 
automatic approach. Even though some preliminary guideline on selection of the frequency 
excursion events has been provided by NERC, there is a gap to standardize the event 
selection process so that it could be automated. Large portion of event data received tend to 
be unnecessarily long. There is significant amount of data with little or no dynamic 
information, leading to long computation times and suboptimal results. Manual crafting is 
possible but takes time and experience. Therefore, there is a need to preprocess the event 
data or extract relevant features from the event data before conducting model validation and 
calibration. 

3. Improvement for reasonableness of the tuned parameters: Though the end user might not 
be sure about which parameters need to be tuned, they prefer to achieve a good response 
match with as few tuned parameters as possible. There is a need to improve the model 
parameter selection process so that a sparse parameter subset could be identified to achieve 
the fittings on the measurement space. There is also a need to provide software user interface 
to interact with the end user to capture the engineering judgement and domain knowledge 
and capture that reusable domain knowledge into the software database for continuous 
learning.  
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4. MVC framework to leverage multi-events: There is a need for a systematic approach to 
leverage recorded data from multiple qualitatively different disturbances to validate the 
power system model and estimate model parameters. 

5. Trustable model calibration algorithms: There is a need for a robust algorithm to generate 
interpretable and deterministic solution with reasonable speed, to overcome the challenge 
from data quality and non-linear property of the dynamic models.  

6. Generic production grade software: There is a need for a generic production grade software 
which could utilize multiple vendors’ simulation engines (TSAT, PowerWorld, PSSE and 
PSLF packages) for validation and calibration. There is a further need for open-source 
model validation and calibration software package for power system asset model validation 
and calibration. 

The objective of advanced model validation and calibration is to address the challenges listed 
above. The latest industry developments in this area are summarized in the following sections. 
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2 Advanced Model Validation 
Most existing model validation modules only provide playback simulation and response 

comparison for user to determine whether the model is “acceptable” or not. To enable a wide 
adoption for GO and TP, there is a need to enhance the automation level and robustness of the 
model validation process [33]. It is desirable to explicitly include adequate domain knowledge or 
include a means to verify if the model or parameter is valid in the model validation software. It is 
further desirable to offer more comprehensive and interpretable performance metrics instead of 
the current “curve fitting” metric to justify when the model is “acceptable”.  

2.1 Enhanced Model Validation Procedure 
An effective model validation process should provide comprehensive validation on the model 

type, model configuration and model parameters before looking at the simulation response curve 
[33].  

● Model Type Check. The currently used dynamic model shall be automatically checked 
against the NERC Approved Dynamic Model List (or NERC Model Notification) [35]. 
There are some recommended models to be used and prohibited model lists. Machine 
model shall be updated to GENTPJ based on NERC Notification. Entities using the 
GENSAL or GENROU model are advised to consider using the GENTPJ model for new 
generators and where generator data is to be newly (re)verified. Prohibited machine model 
may include GENSAL, GENSAE, GENCLS, CGEN1, GENTRA, FRECHG. 

● Parameter Validity Check. The bounds for the key model parameter value and their 
relative logic relationship (such as inequality relationship) based on physics shall be 
automatically evaluated. Some preliminary metric has been provided in the NERC Case 
Quality Dynamic Metrics [37]. The other parameter values not covered in the NERC Case 
Quality Dynamic Metrics shall be automatically evaluated against the parameter bounds 
from a historical database, such as the dynamic model files (dyd or dyr file) from WECC 
and Eastern Interconnection. The readers can refer to [33] for more details. 

● Model Configuration Check. It has been found to be a common case that the models of 
governor and Power System Stabilizer (PSS) provided by the dynamic files are not 
consistent with the reality. Their different combination should be simulated if the 
simulation response does not match the measurement data.  

● Simulation Response Check. The simulated response shall be compared with the 
measurement response for multiple typical scenarios using engineering acceptable and 
applicable metrics, including but not limited to time domain and frequency domain metrics 
such as phase shift, amplitude, and damping ratio. 

Fig. 2-1 shows an exemplified flowchart on how the Model Type Check, Parameter Validity 
Check, Model Configuration Check and Simulation Response Check can be integrated into the 
Model Validation module. Instead of immediately starting the playback simulation to evaluate the 
curve fitting performance, the new scheme will first check the validity of model types based on 
NERC List of Validate Models. The user will be notified if any prohibited model or missing 
excitation model in the dynamic model file has been identified. Based on this information, the user 
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can further correct the dynamic model file if there is human error, or to use the model conversion 
module to convert any prohibited model to a valid one before evaluating the curve fitting 
performance.  

Once the model passes the validity check, the playback simulation response using the given 
dynamic model parameters will be compared with the real measurement. The response matching 
result can be either acceptable or not, depending on the performance criteria and engineer 
judgement. The model will further go through the Parameter Validity Check even though the curve 
matching is acceptable, wherein the bounds and inequality constraints will be evaluated for 
relevant parameters. This additional Check ensures that the generator model is “acceptable” at both 
response space and parameter space. If the Parameter Validity Check fails, the model needs to go 
through the Model Calibration step.  

 

 
Figure 2-1: Enhanced Model Validation Process from GE [33] 
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If the Response Matching result is “unacceptable”, the model will go through some Model 
Configuration Check before preceding to Model Calibration. To avoid unnecessary model 
calibration on the already accurate enough model, the model validation will check the simulation 
response at different model configuration such as governor mode and PSS mode. If any mode 
provides a more reasonable response, then that mode may be the true governor modes. In that case, 
the unnecessary model calibration could be eliminated, and the robustness of the model validation 
is improved. 

Fig. 2-2 shows a user interface that reports the result of the model validation. It does not only 
provide the response match results, but also provides the validity of the model types and model 
parameters, as well as the compliance results to the related NERC published guidelines. 

 
Figure 2-2: Enhanced Model Validation User Interface [33] 

 Fig. 2-3 shows the enhanced model validation process in the commercial software Generator 
Parameter Validation (GPV). The model type check is incorporated. Also, the interaction with the 
end user (GO in this case) is highlighted at different decision points. 
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Figure 2-3: Enhanced Model Validation Process from EPG [38] 

2.2 Performance Metrics  
For generator model validation, an important step is to identify whether the generator model is 

good or questionable. This involves verifying the performance of the generator model for a given 
event and determining if model calibration is required. Typically, a visual comparison between the 
model response and measured response from PMUs for grid events is performed to judge the 
validity of the model.  
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2.2.1 Time and Frequency Domain Mismatch Indices 
In [30], the EPG team proposes new indices to automatically assess the validity of a generator 

model. The indices can quantify the mismatch accurately between the model and measured 
responses from both time and frequency domains. The normalized Root Mean Square Deviation 
(NRMSD) is proposed to quantify the deviation in terms of magnitude for the model and measured 
responses in the time domain. The Comprehensive Similarity (CS) is considered by averaging 
three indices: i.e., Correlation, Frequency Magnitude Similarity, and Frequency Phase Similarity. 
Among them, correlation can quantify the linear similarity of the model and measured responses 
in terms of curve pattern. Frequency Magnitude Similarity and Frequency Phase Similarity can 
quantity the mismatch of the model and measured responses in the frequency domain. The active 
power and reactive power from the model response are compared with the measured response 
using the indices of NRMSD and CS to automatically identify whether the generator model is good 
or questionable. If the calculated NRMSD and CS fall within the corresponding pre-defined 
thresholds both for active power and reactive power, the validated generator model is good; 
otherwise, the validated generator model is questionable. Case studies verify the effectiveness of 
the proposed indices with 25 actual PMU measured events provided by different utilities and grid 
operators. 

2.2.2 Governor and Oscillation Mismatch Indices 
Reference [24] proposes a new set of performance metrics to analyze the model validation 

results by quantifying the mismatch between the actual and model-based response in a 
comprehensive, accurate and automated manner, which can then facilitate the automation of the 
model validation process. For this, the new set of metrics developed in [24] takes into consideration 
mismatches corresponding to several aspects of the generator response, such as phase and 
magnitude of oscillatory modes, and characteristics of the governor response. For this, first, the 
slow governor response and comparatively faster oscillatory response are separated, and then a 
separate set of performance metrics is calculated for each of these two components [23]. These 
proposed metrics quantify the mismatch between the actual and model-based response in a 
comprehensive manner without missing any information enabling automation of the process. 
Furthermore, in [24], it is also proposed that the sensitivity analysis for model calibration be 
performed with respect to the proposed metrics for the systematic identification of key parameters. 
A detailed description of the methodology to calculate these performance metrics, shown in Fig. 
2-4, is discussed next. 
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Figure 2-4. Flowchart of the methodology for calculating advanced performance metrics 

described in [24]. 

 
Methodology: The calculation of the set of metrics proposed in [24] consist of two main steps: 

Step-1: Separating governor and oscillatory response 
During system faults, generator dynamic response can be broken down into two components, 

one is the slow governor response and the other fast oscillatory response. The generator oscillatory 
response is determined by system modes and for that reason the frequency range of this response 
lies between 0.1 and 2.0 Hz. Therefore, the slow governor response and the oscillatory response 
can be separated by passing the generator response through a high-pass filter having a cut-off 
frequency of less than 0.1 Hz as illustrated in Fig. 2-5. The governor response is then obtained by 
taking the difference of the generator response and the oscillatory response and passing the 
resultant signal through median filter to smooth out any oscillatory components present in the 
signal. This is the first and the important step in calculating proposed metrics and performing 
sensitivity analysis. 
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Figure 2-5. Generator response and the corresponding decoupled oscillatory and governor 

response[24]. 

Step-2: Calculation of performance metrics 
In the second step, metrics are calculated for the separated governor and oscillatory response 

of the active power.  

Metrics for oscillatory response: The metric for validating generator oscillatory response is 
calculated based on the properties of the oscillatory modes observed in the PMU and simulated 
measurements. Two metrics are proposed in [23][24] for validating generator oscillatory response, 
one quantifying magnitude similarity and the other quantifying phase similarity of oscillatory 
modes. The metric for magnitude, Oscm, incorporates any discrepancy associated with initial 
amplitude, damping-ratio, and frequency of system modes between the model-based response and 
actual response. The metric for phase, Oscph, calculates any phase difference between the two 
signals. In the proposed methodology, first the system modes and their mode shapes are estimated 
separately for both actual and simulated measurements. In [23][24], even though Prony’s method 
was used for estimating system modes, any other method can also be used. Once the modes are 
estimated, for modes common to both of these signals that have close frequencies, error in 
estimated magnitude (refers to the estimated contribution of a mode to the signal calculated using 
that mode’s frequency, damping ratio and initial amplitude) and initial phase is calculated for each 
mode. In the next step, a single magnitude error metric and a single-phase error metric are 
calculated by taking a weighted average of the corresponding errors between each mode using the 
energy of the mode as a weight factor. For modes that are observed in actual measurements, but 
not in the simulated measurements, a maximum error of 1 is assigned to that mode. 
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Metrics for governor response: Based on the step-response characteristics of a system, several 
metrics are defined to validate the model-based governor response by comparing it with the actual 
governor response. Each metric looks into a specific aspect of the governor response, which are as 
follows: 

1. Delay (Gd): Obtained by taking the difference of the time taken by the model-based and 
actual governor response to reach 10% of their respective peak value with respect to a 
common time reference. 

2. Peak value (GP): Obtained by taking the difference of the peak value of the model-based 
and actual governor response. 

3. Peak time (GPT): Obtained by taking the difference of the time taken by the model-based 
and actual governor response to reach peak-value 

4. Steady-state error (GSS): Obtained by taking the difference of the final value of the model-
based and actual governor response 

5. Rise time (GRT): Obtained by taking the difference of the time taken by the model-based 
and actual governor response to change from 20% to 90% of their respective peak-value. 

Once these error metrics are calculated for given actual and simulated measurements, 
performing sensitivity analysis with respect to these metrics can also help with the identification 
of key model parameters that need to be calibrated in a systematic manner. 

More detail on the calculation of these metrics and performing sensitivity analysis using these 
metrics can be found in [24]. Results for both simulated measurement- and real-world 
measurement-based use-cases are also included in [24] that show the effectiveness of the proposed 
metrics in analyzing the model validation results in a comprehensive and accurate manner, and in 
identification of key model parameters that require calibration. 

2.2.3 Correlation and Frequency Domain Metrics 
Quantitative metrics have been recently proposed in [35] for comparing the simulated system 

responses from the model with the PMU archived system responses. These metrics are useful for 
assessing whether the model simulations are reasonable and whether they match well with the 
actual system behavior. Three different metrics are proposed for the comparison: 1) correlation, 2) 
magnitude similarity in frequency domain, and 3) phase similarity in frequency domain, and an 
average of the three metrics could be useful for providing the user with a “score” for the match or 
for the fitness. The frequency domain scores in different frequency ranges can be used for assessing 
whether the error is contributed by specific system components such as speed governors versus 
exciters. Fig. 2-6 (a) and (b) show two comparisons between simulated and archived MW 
responses of power plants with scores of 91% and 50% respectively for the match between the 
simulated and archived responses. 
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(a) Match score of 91%  

 
(b) Match score of 50%  

Figure 2-6.  Example of scores for comparison of archived and simulated responses for two 
different generators [35] 

3 Advanced Model Calibration 

3.1 Advanced Parameter Selection 
The standard power system component model library involves a large number of interpretable 

parameters; on the other hand, the measured grid disturbance event may not carry rich enough 
dynamic information to excite all the parameters in the various system component models. The 
combined effect of many parameters with low richness information in the measurement may lead 
to an ill-conditioned parameter estimation problem [39]. 

Successful model parameter identification using measurements depends on the nature of 
influence of model parameters on measured quantities. If a parameter has a very weak effect on 
the measured output, successful estimation of such a parameter is unlikely because its effect may 
not be accurately quantified. If the effects of certain parameters on measured output are nearly 
linearly dependent, successful estimation of such parameters is unlikely because the individual 
parameter effects may not be distinguishable.  

The presence of parameters with weak and/or nearly linear dependency is manifested by non-
unique solutions to the estimation problem for different initial parameter values. This is observed 
in the optimization problem of minimizing the difference between measured quantity and model 
output. It has been verified that selecting the “well-conditioned” model parameter subset for 
tuning, while fixing the other “ill-conditioned” model parameters to prior estimates, have greatly 
enhanced the quality and reliability of the estimation results [39]. Furthermore, it may be beneficial 
to identify sets of parameters with strong and linearly independent effects across qualitatively 
different disturbances, and to identify the “best” disturbances to use for model tuning [40]. 

3.1.1 Trajectory Sensitivity Approach 
The trajectory sensitivity approach for power plant model parameter identification can be 

traced back to the 1990s [42][43]. The trajectory sensitivity matrix can be calculated by performing 
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playback simulation, perturbing the value of each parameter, and taking the difference between 
the two responses over the size of the parameter perturbation [44]. The readers can refer to the 
paper [45] for one implementation example. Due to its simplicity for shortlisting the key 
parameters to be tuned and potential use in the optimization iteration step, this approach has been 
widely used in most model calibration studies. 

3.1.2 Approach Informed by Governor and Oscillation Indices 
Based on the calculated metrics described in Section 2.2.2, if it is determined that the model 

needs calibration, the next step is to perform the sensitivity analysis to identify those parameters 
that need to be tuned. In [24], the sensitivity analysis was carried out with respect to the proposed 
metrics that quantified the impact of each model parameter, especially on error metrics that showed 
mismatch between actual and model-based responses. For example, if it is identified that the 
generator model response has mismatch with the actual governor’s response time, given by delay 
metric, then the sensitivity analysis needs to be performed with respect to the delay metric to 
identify parameters that have significant impact on delay metric. In this approach, instead of 
selecting any parameters that can affect the generator response, selection of model parameters is 
limited to the ones that affect only those error metrics for which significant mismatch was observed 
between the actual and simulated measurements.   

3.1.3 Global Sensitivity Approach 
As illustrated in trajectory sensitivity approach, the sensitivity matrix can be calculated by 

performing playback simulation where each parameter is perturbed. However, to construct a 
comprehensive and precise matrix, this process can be time-consuming due to massive simulations 
in the presence of high-dimension parameters. Also, the identification of suspicious parameters 
can be challenging if the parameters are strongly dependent on each other. 

To efficiently build the parameter sensitivity matrix, the generalized polynomial chaos-based 
analysis of variance (ANOVA) method, a global sensitivity analysis (GSA) approach is advocated. 
It can be formulated as: 
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where, y is the measurement/system response and 1 2, ,ξ Nξ ξ ξ= …    is random variable vector 

containing parameters and state variables; ( )1 2, ,i Nφ ξ ξ ξ…  is polynomial chaos basis and ia  is the 
i-th polynomial chaos coefficient. Then, the sensitivity for each parameter can be calculated: 
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where 2σ   means the variance. The dependence between each parameter can also be obtained: 
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By using the above two equations, the sensitivity of each parameter to the response y  can be 
analytically determined. [46] uses ANOVA to detect suspicious parameters and investigate the 
parameter dependence. Combined with unscented Kalman filter (UKF), sensitivity of each 
parameter is utilized as the weight for parameters’ calculation, leading to good robustness against 
non-Gaussian noise. Regarding the dependence between each parameter, several parameters that 
are identified to have strong dependence will be divided into two different groups, and updated 
group by group, avoiding the local optimality of parameter estimation due to the dependence. 

 

Table 3-1 Comparison results of parameter estimation in pu with and without adaptive 
weights, where the values shown in the brackets represent their standard deviations. 

 
 

Case studies are carried out on the IEEE 39-bus system to evaluate the effectiveness and 
robustness of the proposed method. In Table 3-1, dX , dT ′   and M  are generator parameters; KF  

and KA  are exciter parameters; RD  is the governor parameter. µ  and σ  are respectively the 
mean value and standard deviation of each parameter. Only the results for Adaptive generalized 
maximum-likelihood (GM-UKF) with and without the adaptive weights are derived from the 
sensitivity analysis. It can be found that due to the strong dependency among parameters KF , KA  

and dX , the direct augmenting 6 parameters with system states for joint estimation will yield local 

optimal solutions of KA  and dX . By contrast, with the derived adaptive weights and the strategy of 
breaking down the parameter dependence, the proposed adaptive GM-UKF can achieve much 
higher accuracy of calibrating the suspicious parameters. By further looking at the standard 
deviation for each estimated parameter, it is observed due to the lack of capability in dealing with 
correlated parameters, the method without adaptive weights has much larger variances. This is 
expected as the searching space for it is quite random and as a result, a good solution may be 
obtained sometimes. However, the solutions are not satisfactory most of the time. By contrast, 
with the adaptive weights, the correlations among erroneous parameters can be addressed and the 
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search space is around the optimal values, yielding small standard deviations of the estimated 
parameters. 

 
(a)                                                                        (b) 

Figure 3-1.  Dynamic responses under non-Gaussian noise. (a) Real power response using 
calibrated parameters with non-Gaussian noise; (b) Reactive power response using calibrated 

parameters with non-Gaussian noise. 

In the presence of non-Gaussian noise, as shown in Fig. 3-1, although UKF does not diverge, 
its results are strongly biased. The results are expected because UKF is derived based on Gaussian 
assumption and the non-Gaussian noise significantly deteriorates the estimation efficiency. By 
contrast, thanks to the adaptiveness and robustness of GM-UKF, it can filter out the non-Gaussian 
noise and its performance is slightly affected. 

3.1.4 SVD Based Methods 
Further analysis on the trajectory sensitivity matrix can reveal the information of the magnitude 

and dependency of parameter sensitivity. A parameter with high sensitivity magnitude and low 
dependency with other parameters would be a great candidate to alter the simulation response to 
match the real measurement. In contrast, a parameter with low sensitivity magnitude or high 
dependency with other parameters would be a poor candidate for the model calibration purpose.  

Singular value decomposition (SVD) is a useful tool for extracting such information based on 
the trajectory sensitivity matrix. Let A be the Nt-by-Np trajectory sensitivity matrix, where Nt is 
the number of time samples, Np is the number of parameters.  
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The SVD of A is, 

 𝐴𝐴 = 𝑈𝑈𝑈𝑈𝑉𝑉𝑇𝑇 (5) 

where the Nt-by-Nt matrix U’s columns are the left singular vectors 𝑢𝑢𝑖𝑖’s (i = 1…Nt) of A; the Nt-
by-Np matrix S’s upper left diagonal elements are the singular values 𝜎𝜎𝑖𝑖’s (i = 1…Np) of A; the 
Np-by-Np matrix V’s columns are the right singular vectors 𝑣𝑣𝑖𝑖’s (i = 1…Np) of A. 

After applying SVD to the trajectory sensitivity matrix A, the magnitude of the parameter 
sensitivities can be calculated as 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠 = �𝜎𝜎𝑖𝑖2𝑉𝑉𝑖𝑖2
𝑁𝑁𝑁𝑁

𝑖𝑖=0

 (6) 

The dependency of parameter sensitivities can also be calculated from the result of the SVD. As 
indicated in [39], the dependency of parameter sensitivities is contained in the right singular 
vectors corresponding to zero singular values (i.e. null space of sensitivity matrix). For each 
column of the null space, if there is more than one element larger than a predefined threshold, the 
parameter sensitivities corresponding to those elements have dependencies. This can be explained 
by the definition of null space. Every right singular vector in the null space represents a zero-mode, 
the value of elements in that right singular vector indicate the contribution of parameter 
sensitivities to that zero mode. If there are multiple large elements, they contribute to the zero 
mode by offsetting each other as a linear combination. 

A dependency index can be defined by counting the large elements in the right singular vectors 
in the null space. A spiral graph [47], an example of which is provided in Fig. 3-2, can be used to 
visualize both the magnitude and dependency of parameter sensitivities. The parameters at the 
vertices of the spiral are arranged in such a way that the sensitivity magnitude decreases in counter-
clockwise direction.  Also, the connectivity between any two parameters suggests their sensitivities 
have dependencies. 
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Figure 3-2. Spiral graph showing magnitude and dependency of parameter sensitivity [47]. 

In reference [39], a similar idea was used to select a subset of the model parameters for tuning 
purpose. By partitioning the eigenvalues of the Hessian Matrix into “active” columns and 
“redundant” columns, the parameters corresponding to the “active” columns, also called “well-
conditioned” parameters, are subject to model tuning. In an exemplified case study with 9 
parameters for a synchronous generator, the 9 machine model parameters were partitioned into 7 
well-conditioned parameters and 2 ill-conditioned ones. The estimation results by fixing the 2 ill-
conditioned parameters to their default values lead to time saving by a factor of 10 with a more 
accurate parameter results compared to the full-order cases (all 9 parameters are estimated).  On 
the other hand, a huge mean deviation from the “true” values are observed showing estimating all 
model parameters can yield extremely unreliable results.  

3.1.5 Similarity Based Methods 
The sensitivity trajectory-based approach exploits the effect of the model parameter to the 

model response at the operating point of the given event. Considering the motivation of the model 
parameter screening is to reduce the residual between the simulation response and the 
measurement output, it is desirable to leverage the geometric relationship between model 
parameter sensitivity to the actual measurement. Specifically, it is reasonable to expect model 
parameters whose sensitivity with less “orthogonal angles” to the residual direction are more likely 
to reduce the residual [15]. 

In contrast with the traditional trajectory sensitivity, a cosine similarity between the response 
residual r(t) and the parameter sensitivity vector (Jacobian column) is used to represent the 
significance of each parameter. 

 𝛼𝛼 = { 𝑟𝑟(𝜃𝜃𝑘𝑘)∙𝑆𝑆𝑦𝑦𝑦𝑦
‖𝑟𝑟(𝜃𝜃𝑘𝑘)‖ ‖𝑆𝑆𝑦𝑦𝑦𝑦‖

}   (7) 
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The parameters will be ranked based on their magnitude of the angle 𝛼𝛼. The 𝛼𝛼 for an ideal 
model parameter 𝜃𝜃𝑘𝑘  is zero, but that is generally unachievable. The parameter to be selected for 
further tuning can be specified as the top N ranked parameter or can be those whose angle is smaller 
than a predefined value such as 5˚. 

3.1.6 Empirical Gramian Based Method 
 
The trajectory sensitivity method is only locally defined for one operating point and the nonlinear 
behavior of the generator model is inevitably lost. In [50] the empirical Gramian approach is 
adapted to analyze the sensitivity of the outputs to parameters. Specifically, an empirical parameter 
sensitivity Gramian (EPSG) is defined which perturbs the parameters to reveal the parameter-
output behavior. Note that EPSG is defined for a reasonable region of the parameters directly for 
the original nonlinear dynamical model and can thus better reflect the identifiability of the 
parameters. The following sets are defined for EPSG: 

 
𝑇𝑇 = {𝑇𝑇1,⋯ ,𝑇𝑇𝑟𝑟;  𝑇𝑇𝑟𝑟 ∈ 𝑅𝑅𝑣𝑣×𝑣𝑣 ,𝑇𝑇𝑗𝑗𝑇𝑇𝑇𝑇𝑗𝑗 = 𝐼𝐼𝑣𝑣 , 𝑗𝑗 = 1,⋯ , 𝑟𝑟} 

𝑀𝑀 ={𝑐𝑐1,⋯ , 𝑐𝑐𝑠𝑠;  𝑐𝑐𝑚𝑚 ∈ 𝑅𝑅, 𝑐𝑐𝑚𝑚 > 0,𝑚𝑚 = 1,⋯ , 𝑠𝑠} 

𝐸𝐸 ={𝑒𝑒1,⋯ , 𝑒𝑒𝑣𝑣;  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑖𝑖𝑖𝑖 𝑅𝑅𝑣𝑣}, 
(8) 

where T defines the initial parameter perturbation direction, r is the number of matrices for 
perturbation directions, M defines the perturbation sizes, s is the number of perturbation 
sizes for each direction,  𝐼𝐼𝑣𝑣 is an identity matrix with dimension v, and E defines the parameter to 
be perturbed. 

For the ith parameter, 𝛼𝛼𝑖𝑖, in the nonlinear power system model, with fixed initial states 𝑥𝑥0, 
EPSG can be defined as: 

 𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑖𝑖) = ∑ ∑ 1
𝑟𝑟𝑟𝑟𝑐𝑐𝑚𝑚2

∫ 𝛷𝛷𝑗𝑗𝑗𝑗(𝑡𝑡)𝑑𝑑𝑑𝑑∞
0

𝑠𝑠
𝑚𝑚=1

𝑟𝑟
𝑗𝑗=1 , (9) 

where 𝛷𝛷𝑗𝑗𝑗𝑗(𝑡𝑡) ∈ 𝑅𝑅𝑜𝑜×𝑜𝑜  is given as 𝛷𝛷𝑗𝑗𝑗𝑗(𝑡𝑡) = (𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡) − 𝑦𝑦0
𝑗𝑗𝑗𝑗)(𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡) − 𝑦𝑦0

𝑗𝑗𝑗𝑗)𝑇𝑇, 𝑦𝑦0
𝑗𝑗𝑗𝑗 refers to the 

outputs corresponding to the unperturbed initial parameter 𝛼𝛼0, and 𝑦𝑦𝑗𝑗𝑗𝑗(𝑡𝑡) is the output of the 
nonlinear system under parameter 𝛼𝛼𝑗𝑗𝑗𝑗 = 𝛼𝛼0(1 + 𝑐𝑐𝑚𝑚𝑇𝑇𝑗𝑗𝑒𝑒𝑖𝑖). 

The discrete form of EPSG can be defined as: 

 𝑊𝑊(𝛼𝛼𝑖𝑖) = ∑ ∑ 1
𝑟𝑟𝑟𝑟𝑐𝑐𝑚𝑚2

∑ 𝛷𝛷𝑘𝑘
𝑗𝑗𝑗𝑗∆𝑡𝑡𝑘𝑘𝐾𝐾

𝑘𝑘=1
𝑠𝑠
𝑚𝑚=1

𝑟𝑟
𝑗𝑗=1 , (10) 

where 𝛷𝛷𝑘𝑘
𝑗𝑗𝑗𝑗 ∈ 𝑅𝑅𝑜𝑜×𝑜𝑜   is given by 𝛷𝛷𝑘𝑘

𝑗𝑗𝑗𝑗 = (𝑦𝑦𝑘𝑘
𝑗𝑗𝑗𝑗−𝑦𝑦0

𝑗𝑗𝑗𝑗)(𝑦𝑦𝑘𝑘
𝑗𝑗𝑗𝑗−𝑦𝑦0

𝑗𝑗𝑗𝑗)𝑇𝑇 , 𝑦𝑦𝑘𝑘
𝑗𝑗𝑗𝑗  is the output of the 

nonlinear system at time step k corresponding to the parameter 𝛼𝛼𝑗𝑗𝑗𝑗 = 𝛼𝛼0(1 + 𝑐𝑐𝑚𝑚𝑇𝑇𝑗𝑗𝑒𝑒𝑖𝑖), and ∆𝑡𝑡𝑘𝑘is 
the time step size.  

The identifiability of the ith parameter can be indicated by the trace of 𝑊𝑊(𝛼𝛼𝑖𝑖). Through 
numerical experiments, it is found that trace as a metric that measures the overall identifiability of 
a parameter is a good choice among several available metrics [50]. 
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Note that some parameters do not change much during the generator lifetime based on 
engineering experience. If that is the case those parameters will not be calibrated even if they are 
identified as critical parameters or prior distributions for those parameters can be properly assigned 
based on this information (i.e., for uniform prior distribution the width of the interval can be 
reduced for those parameters and for normal prior distribution the standard deviation can be 
reduced). 

3.2 Advanced Model Parameter Tuning 
A power system simulation engine can be represented by an Ordinary Differential Equation 

(ODE) model: 

 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑝𝑝) 
𝑦𝑦 = ℎ(𝑥𝑥, 𝑝𝑝) 

(11) 

 
where x, u, p, and y are state, input, parameters, and outputs, respectively.  In playback mode, 
recorded excitation or input data u such as voltage and frequency are played into an ODE or a 
Differential-Algebraic system of Equations (DAE) model of the power system component and the 
model response or output y such as real and reactive power is to be computed.  The problem is to 
seek a procedure to determine a set of parameters p such that the playback simulation of the model 
when excited with measured input data um, produces a simulated response that is close in some 
sense to the recorded response ym. 

Note that one typical approach is to treat the model parameters p as state variables to cast the 
problem as a standard nonlinear state estimation problem, where w is process noise that accounts 
for input noise and model mismatch, and v is the measurement noise: 

 
(𝑝𝑝,𝑥𝑥 ) = (0 𝑓𝑓(𝑥𝑥,𝑢𝑢, 𝑝𝑝) ) + 𝑤𝑤 

𝑦𝑦 = ℎ(𝑥𝑥, 𝑝𝑝) + 𝑣𝑣 
 

(12) 

To solve this nonlinear estimation problem, particle filtering, extended, ensemble and/or an 
unscented Kalman filter may be used. 

According to another approach, the measured input/output data (u, ym) may be used by a power 
system component model and an optimization-based approach to create the estimation parameter 
(p*).  In this case, the following optimization problem may be solved: 

 ‖𝑦𝑦𝑚𝑚 − Ŷ(𝑝𝑝)‖2  
 

(13) 

The system may then compute output as compared to parameter Jacobian information and 
iteratively solve the above optimization problem by moving parameters in directions indicated by 
the Jacobian information. 

Machine learning methods have also been applied for parameter calibration. Its main idea is to 
extract the hidden relationship between dynamic response and parameters. The following sections 
will provide some examples for the three approaches. 
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3.2.1 Estimation-Based Approach  
The model parameter calibration or tuning can be cast as a state estimation problem. The model 

parameters are treated as state variables, with a process noise accounting for input noise and model 
mismatch. Reference [49] has presented the pioneering work to apply Kalman Filter technique 
(including Extended Kalman Filter) to estimate the generator model parameters using the field test 
data. 

The Kalman filter method is a recursive data processing algorithm, which estimates the states 
of a dynamic system with minimum mean-square error recursively over time using incoming 
observations (measurements) and a dynamic system model. The Kalman filter method typically 
has two recursive steps, a prediction step and a correction step, as shown in Fig 3-3. In the 
prediction step, the measurements at step k are predicted based on their values at the previous step, 
k−1, using the system dynamic equations. In the correction step, the Kalman gain is computed. 
With the information from the latest obtained measurements and the Kalman gain, the estimated 
states can be updated. Once the updated states are obtained, the algorithm will move to the next 
time step. Note that the critical element for the Kalman Filter method is how to compute the 
Kalman gain, and thus the Kalman filter method has many variation methods based on the different 
approach to compute the Kalman gain, such as extended Kalman Filter method (EKF), Ensemble 
Kalman Filter (EnKF) method, etc. 
 

 
Figure 3-3. The basic Kalman Filter algorithm 

Reference [44] proposed an EKF-based and sensitivity trajectory-based method to calibrate the 
parameters of the generation plant. It utilizes a perturbation-based method to compute the 
linearized system transition matrix for the dynamic system of the generation plant, and the Kalman 
gain is computed based on the linearized system transition matrix.  

The method in [44] is applied to calibrate parameters of a WECC generation plant. Table 3-2 
lists the original values and the estimated values for the calibrated parameters. Fig. 3-4 shows a 
comparison between the real and reactive power measurements generated from the generation 
plant model with calibrated parameters and the real PMU measurements. It is seen that the model 
outputs based on the calibrated parameters match the PMU measurements very well. 
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Table 3-2 The original values and the estimated values for the calibrated parameters of the 
generation plant. 

 
 

 
Figure 3-4. Comparison between the real and reactive power measurements generated from the 

generation plant model with calibrated parameters and the real PMU measurements. 

Reference [45] proposed an EnKF-based and sensitivity trajectory-based method to calibrate 
the parameters of the generation plant. The EnKF is a sequential Monte Carlo implementation of 
the Kalman Filter method, which introduces an ensemble of samples to represent and propagate 
the probability density function (PDF) of the state variables. The PDF can be approximated with 
high accuracy by using a large number of samples. The Kalman gain can be also computed 
efficiently based on the ensembles of the state variables and the system dynamic equations. 
Compared with Kalman Filter algorithms, the EnKF algorithm has the advantages that it eliminates 
the need to derive Jacobian matrices for nonlinear models, and thus simplifies the complexity of 
algorithm implementation, and accelerates computation speed.  

The method in [45] is applied to calibrate parameters of a WECC generation plant. Table 3-3 
lists the original values and the estimated values for the calibrated parameters. Fig. 3-5 shows a 
comparison for the real and reactive power measurements generated from the generation plant 
model with uncalibrated parameters, calibrated parameters, and the real PMU measurements. It is 
seen that the model outputs based on the calibrated parameters match the PMU measurements very 
well. 
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Table 3-3 The original values and the estimated values for the calibrated parameters of the 
generation plant. 

 

 
Figure 3-5. Comparison between the real and reactive power measurements generated from 

the generation plant model with original and calibrated parameters, as well as the real PMU 
measurements. 

3.2.2 Optimization Based Approach 
Reference [50] has presented the pioneering work to apply the weighted least square approach 

to estimate the generator model parameters for an aircraft generator, based on short circuit test. 
Then Juan [42] and Stephen [43] combined the trajectory sensitivity into the least square method 
for model calibration of a simulated synchronous generator together with exciter.  

3.2.2.1 Efficient Trust Region Approach 
Fig. 3-6 describes a Gauss-Newton Trust Region algorithm.  S820 has definitions and 

initializations, S830 determines a step based on the trust region approach, and S850 provides the 
updated Jacobian information.  One pass thru S820 and S850 is termed as an iterate.  Each model 
evaluation involves calling a standalone external solver that performs the play-back simulation.  
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These calls are expensive, typically taking from 0.5 to 1 second to evaluate.  If the system has 30 
parameters to tune, about half a minute may be required just for a forward difference Jacobian call. 

Thus, the number of function evaluations may be reduced, especially reducing the number of 
expensive Jacobian calls.  To this end, reusing the Jacobian between successive iterates is a natural 
option, i.e. reuse the last computed Jacobian in determining the step so long as such steps produce 
sufficient decrease in objective function.  

A further refinement can be done by performing certain rank-one updates to improve the 
accuracy of the Jacobian along the iterates (as opposed to just reusing the last computed Jacobian).  
The implemented algorithm might, according to some embodiments, perform a Broyden rank-one 
update on the last computed Jacobian and use these for calculating the search direction until the 
resulting steps provide sufficient reduction in objective.  These iterations may be termed as 
“inexact” since they are not based on the exact Jacobian.  If the reduction in objective from inexact 
steps is insufficient, a computation of Jacobian at the current point may be trigged and an “exact” 
iteration follows. 

 
Figure 3-6. Trust region approach for model calibration. 
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3.2.2.2 Black-Box Optimization Based Approach 
 

In [51] a synchrophasor measurement-based generator parameter calibration method is 
proposed by a black-box optimization approach with a stochastic radial basis function (RBF) 
surrogate model. Based on comparison between the outputs of the generator model with estimated 
parameters and the PMU measurements, an 𝐿𝐿1 norm based objective function is defined for the 
black-box optimization problem, which is approximated by an RBF surrogate model. The prior 
information of the parameters is treated as constraints in the black-box optimization problem. The 
formulated black-box optimization problem is then solved by a Stochastic Response Surface 
Method (MSRSM). This method does not require an explicit objective function, can solve non-
convex problems by building a global model of the objective function, and guarantees convergence 
to the global optimum from a theoretical standpoint if the number of iterations is large enough. 

 The method in [51] is applied to calibrate eight critical parameters of a generator. The prior of 
these parameters is assumed to follow uniform distributions. The mean values of the uniform 
distribution are set as 10% greater than their true values. The lower/upper bounds of the uniform 
prior distributions are chosen as 30% smaller/greater than the mean values. Table 3-4 lists the 
estimated values and the percentage errors. It is seen that the algorithm has good accuracy under 
high dimension. Fig. 3-7 shows a comparison between the real and reactive power measurements 
generated from the true parameters and the model outputs from estimated parameters. The model 
outputs based on the estimated parameters match the measurements very well, indicating that the 
estimated parameters are very accurate. 

Table 3-4 Calibration of eight critical parameters [51] 
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Figure 3-7. Measurements and the outputs for the model with the estimated parameters: (a) Real 

power; (b) Reactive power. 
 

3.2.2.3 Approximate Bayesian Computation-Based Approach 
 

In [50], a generator parameter calibration approach is proposed by adaptive Approximate 
Bayesian Computation with sequential Monte Carlo sampler (A-ABC-SMC). It is a likelihood-
free method that does not directly explore the likelihood surface of the parameters but instead 
estimates the posterior distributions of the parameters by a simulation-based procedure, 
significantly improves the computational efficiency of ABC SMC through adaptive threshold 
sequences and perturbation kernel function, and carefully chosen distance function. 

In the A-ABC-SMC algorithm, an 𝐿𝐿1 distance function is used which is shown to have better 
performance than the other distance functions such as chi-squared distance function or the root 
mean square (RMS) distance function. Since dynamic simulation is the most computationally 
expensive part of the A-ABC-SMC algorithm, a properly chosen threshold sequence should reduce 
the total number of dynamic simulations. This requires a careful balance between the number of 
simulations in each iteration and a good approximation of the posterior distribution. Thus, an 
adaptive threshold sequence that considers the impact of all previous iterations is proposed. This 
addresses the inefficiency issue for the existing methods especially for later iterations and greatly 
improves the efficiency.  

Also, it is noticed that utilizing the existing kernels ABC SMC may waste a lot of time in 
sampling the areas of low likelihood, and the acceptance rate could be very low and the algorithm 
may be stuck in local modes. For existing kernels, the algorithm will search around the particles 
located in low densities. Therefore, an adaptive perturbation kernel is proposed for which the focus 
is more on the space with higher densities, thus improving time efficiency. 

The A-ABC-SMC approach provides the posterior distribution of the parameters based on the 
N particles in the last iteration, not just one point estimation. The maximum-a-posteriori (MAP), 
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the mean of the N particles in the last iteration for each parameter is chosen as the estimated 
parameter. A-ABC-SMC is applied to calibrate fourteen critical parameters of a generator. The 
priors of these parameters are assumed to follow Gaussian distributions whose means are 10% 
greater than their true values and whose standard deviations are 20% of the mean values. Table 3-
5 lists the estimated values, which indicate that the algorithm has good accuracy. 

 In real application, true model parameters are never known. It is possible that for different 
events the algorithm may provide different parameters. In addition to engineering judgment 
and experience that can help choose reasonable parameters, techniques can also be developed 
based on the available multiple events to help select the best parameters. For example, one can 
consider one event to estimate the parameters and use the other events to cross-validate the 
estimated parameters. Assume PMU measurements for three events are available. The parameters 
are estimated with each one of the three events and the 𝐿𝐿1norm error for all three events is then 
calculated. The parameter set with the smallest average 𝐿𝐿1 norm error is selected. Fig. 3-8 shows 
the model validation results under three events with the original parameters and the estimated best 
parameters. It is seen that the mismatch between model outputs and PMU measurements is 
significant under original parameters while the model outputs from the estimated parameters can 
match the PMU measurements very well for all three events. 

Table 3-5 Calibration of fourteen critical parameters [50] 
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Figure 3-8. Model outputs before and after parameter calibration: (a) Event 1; (b) Event 2; (c) 

Event 3. Black curve is for PMU measurements, red curve is for model outputs before 
calibration, and green curve is for model outputs after calibration. 

In terms of time efficiency, the calibration of two and fourteen critical parameters using A-
ABC-SMC takes 1 and 10 minutes, respectively. By contrast, it takes at least 20 minutes for the 
two-parameter case and more than 2 hours for the fourteen-parameter case if using the existing 
threshold sequence schemes and perturbation kernel functions. 

3.2.3 Machine Learning Based Approach 
Machine learning methods have also been applied for parameter calibration. The main idea is 

to extract the hidden relationship between dynamic response and parameters. [53] is the first work 
to generate extensive simulation data to train a multi-output convolutional neural network model 
and predict a small number of generator parameters. [54] uses Q-learning-based method but only 
works for cases where a few parameters need to be calibrated. [55] further employs deep Q-
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learning-based method and performs well in low-dimensional cases under different events. 
However, the q-value affects the policy significantly, and a small change in the Q-value affects the 
policy a lot. [56] proposes soft actor-critic-based method and has a good performance for 
calibration, but it requires a lot of hyper-parameters tuning to converge. To address these issues, 
[57] proposes conditional variational autoencoder to find the model of conditional probabilistic 
distribution between synchrophasor measurements the critical parameters.  

3.2.3.1 Q-Learning Based Approach 
In [54] a Q-learning based method is proposed for parameter calibration. The implementation 

of this method is much more straightforward and reliable without the many complications in deep 
Q-learning, and it works well for the parameter calibration problem with a small number of 
parameters. 

Q-learning is a model-free reinforcement learning (RL) algorithm with the goal of learning a 
policy to tell an agent what action to take under what circumstances. In Q-learning, an agent takes 
sequential actions at a series of states based on a state-action value matrix, Q-table, until reaching 
an ultimate goal. Let A and S be the action space and state space respectively. At each episode t, 
the agent observes a state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 and chooses an action 𝑎𝑎𝑡𝑡 ∈ 𝑆𝑆 based on policy π, which is a 
function that maps states into actions. As a consequence of taking action 𝑎𝑎𝑡𝑡, the agent receives a 
reward Rt defined as 𝑅𝑅𝑡𝑡 = 𝑅𝑅(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡, 𝑠𝑠𝑡𝑡+1) and observes the next state 𝑠𝑠𝑡𝑡+1 of the environment. The 
RL framework considers the Markov decision process assumption, i.e. 𝑠𝑠𝑡𝑡+1 is only conditioned by 
st and at and is sampled according to the transition probability 𝑝𝑝(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡). The above process 
is continued until the agent reaches the last episode, called the terminal state. 

Let 𝛼𝛼𝑐𝑐  be the vector of critical parameters and 𝜖𝜖𝑠𝑠  a discrepancy function of the simulated 
measurements and real measurements. The pseudocode of the Q-learning based parameter 
calibration algorithm is shown below [54]. 
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The Q-learning based method is applied to a power system to calibrate two and four critical 
parameters of a generator. Fig. 3-9a shows the cumulative rewards for calibrating two parameters. 
It is seen that the training converges after 421 iterations, which takes 5 hours. Fig. 3-9b shows the 
cumulative rewards for calibrating four parameters. The training converges after 1000 iterations 
which takes 8 hours.  

 
Figure 3-9. Cumulative rewards for two and four-parameter case: (a) Two parameter case; (b) 

Four parameter case [54]. 

Fig. 3-10 shows the results for real and reactive power under the estimated parameters and the 
parameters before the calibration. The parameters before calibration are 10% greater than the true 
values. Before calibration there is obvious discrepancy between the model outputs and the PMU 
measurements while with the estimated parameters the model outputs match the PMU 
measurements very well. 

 
Figure 3-10. Model performance before and after parameter calibration: (a) Real power; (b) 

Reactive power. Black curve is PMU measurements, green curve is for model before calibration, 
and red curve is for model after calibration [54]. 
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3.2.3.2 Conditional Variational Autoencoder based Approach 

 
Figure 3-11. The overall framework for CVAE based model validation and parameter 

calibration [57]. 

Based on synchrophasor measurements, [57] has proposed a method using conditional 
variational autoencoder (CVAE) to calibrate the parameters of power plant model, including 
synchronous machine, power system stabilizer, exciter and governor models. The overall 
framework is shown in Fig. 3-11. By employing elementary effects approach, the critical 
parameters with the highest identifiability can be accurately identified for the nonlinear power 
plant model, while the traditional sensitivity-based method cannot handle the nonlinear behavior 
well. Subsequently, with the distribution projection of CVAE, the conditional probabilistic 
distribution between synchrophasor measurements and the critical parameters can be fitted. 
Consequently, the critical parameters can be calibrated accurately.  

Due to the application of CVAE, a likelihood function or state-space model of the generator is 
not required. Besides, thanks to the distribution projection function of CVAE, the high-dimension 
parameters can be easily handled and no prior probabilistic distribution of the parameters is 
required. 

The proposed method is tested using PSS/E software. A PMU is installed at the 230-kV side 
of the substation with a sampling rate of 30 samples/s. Table 3-6 lists the top eighteen critical 
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parameters identified by elementary effects approach and sensitivity-based approach for the same 
event. It can be seen that elementary effects approach can distinguish critical parameters more 
easily due to its capability of handling nonlinearity.  

Table 3-6 Top Eighteen Critical Parameters Identified by Elementary Effects Approach and 
Sensitivity-based method 

 

In Table 3-7, π denotes the distribution; tH and t
AK  are respectively the true value of inertia and 

AVR steady state Gain; U and N are respectively the uniform distribution and normal distribution; 

Γ and Λ are respectively the Gamma distribution and Weibull distribution. It is seen that the 
proposed method can accurately estimate the parameters under different prior distributions, and 

the largest errors for inertia H  and AVR steady state Gain AK   are, respectively, 0.3 %, and 0.4 %. 
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Table 3-7 Parameter Calibration under Different Distributions 

 
Table 3-8 lists the true and estimated values of 18 parameters. The prior distributions of these 

parameters for training the model are assumed to follow a uniform distribution. The estimation 
errors verify the well-trained model has acceptable accuracy for high dimensional parameters. The 
more detailed analysis can be seen in [57]. 

Table 3-8 Calibration under 18 Parameters 

 

3.3 Performance Validation Process and Metrics  
Model Validation and Calibration (MV&C) is key to ensure the generator model compliant to 

the NERC standards with adequate accuracy. GE Grid Solution’s current Model Validation module 
has only the playback simulation function and response comparison for user to determine whether 
the model is “acceptable” or not.  No domain knowledge or intelligence is imbedded so far and no 
means to verify if the model or parameter is valid or compliant to NERC standard or case study 
metrics. The current Model Calibration Module using numerical curve fitting without adequate 
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engineering guidance tends to provide overfitted parameter result, which should be avoided at all 
costs.  Issue of nonunique set of parameters (leading to same curve fitting performance) may cause 
invalid model parameter values, which may even lead to an unstable system at some operating 
conditions. Without properly integrating power system and control system domain knowledge, the 
result from MV&C is difficult to gain industrial acceptance and trust. 
 

GE proposed a new MV&C framework: Model Validation, Model Calibration and Post 
evaluation. The New Model Calibration includes dynamic features (phase shift, amplitude, and 
damping ratio) in the objective functions and parameter value reasonable constraints; the Post 
Evaluation includes another layer of check on model, parameter, response, and control stability 
check. The corresponding adaptive parameter or bounds adjustment is designed at the end of Post 
Evaluation so that post evaluation results can readjust the iteration with model calibration [58].  
 

 
 

Figure 3-12. model validation and calibration including post processing [58]. 

 
Fig. 3-12 shows an exemplified flowchart of recommended solution to enhance MV&C with 

all four-reasonableness check. There are four major blocks in the new scheme: data ingestion, 
enhanced model validation (Block A), enhanced model calibration (Block B) and post evaluation 
(Block C).  
 

The data flow starts from input data file ingestion including event data file, generator dynamic 
model file, generator’s network file (netmom) and subsystem definition. The enhanced model 



 

47 | Page 
 

validation is conducted after the data ingestions. Compared to current practice, the enhanced model 
validation incorporates model validity check, NERC case study metric related parameter check 
and governor mode evaluation, which has been fully describe in [58]. 

 
The core of the current model calibration is a Non-linear Least Square (NLS) Optimization 

without specifying parameter bounds. In the enhanced model calibration, the Parameter Check is 
added as constraints; while the Response Match is added as part of objective functions (see [58] 
for details). 

After completing the model calibration, the Post Evaluation will automatically evaluate all 
four-reasonableness check, as shown in the right part of Fig. 3-12 (Block C), this is the last defense 
layer to safeguard the model meet the predefined requirements. If the model does not pass the 
Validity check, the code will go back to Model Validation (Block A) to re-verify. If the model 
does not pass the Parameter Check, then the corresponding constraints for the out-of-spec 
parameters will be updated and go back to Model Calibration (Block B). If the Response Check 
fails, then the corresponding penalty weight for that specific response feature will be increased. If 
the Function Check fails, depending on which model or function fails, the corresponding parameter 
affecting that model or function will be updated before restarting the model calibration. One 
example of the user interface for a post evaluation checklist is given in Fig. 3-13. 
 
 

 
 

Figure 3-13. model validation and calibration including post processing [58]. 
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The enhanced MV&C can make the generator model and parameter compliant to relevant 
NERC standards and notifications, ensure the calibrated control system stability at reasonable 
operating range, and allow better match on control dynamics.
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4 Multiple Event Based Model Validation & Calibration 
One of the key objectives for disturbance-based model validation is to keep the power plant 

models and interconnected system models updated so that they can replicate the system events in 
the evolving power grid. The need for using multiple disturbance events for model validation has 
been given in Reference [3]: “The goal of that validation should not be to mimic just one response 
but rather to provide the best match of response to a number of system conditions.”  Using multiple 
disturbance events for model validation can improve the model consistency [38] and avoid 
overfitting the model parameters to a certain disturbance [45]. 

How to best leverage multiple disturbance events for disturbance-based model validation? 
Thus far, the four primary questions in the community could be summarized as: which subset 
events to select, what metric to use for evaluation of aggregated performance over multiple events, 
what parameters to calibrate, and how to calibrate. 

4.1 Motivation for Using Multiple Events 
The performance of the calibration tool is expected to improve by running it simultaneously 

over multiple events [48]. The underlying idea is that quality of the estimate improves as the 
“amount of information” increases. A simple way to see this is to consider three jointly Gaussian 
random variables (𝑥𝑥, 𝑦𝑦1,𝑦𝑦2) with covariance matrix �𝜎𝜎𝑥𝑥𝑥𝑥2  𝜎𝜎𝑥𝑥𝑦𝑦1  𝜎𝜎𝑥𝑥𝑦𝑦2  𝜎𝜎𝑥𝑥𝑦𝑦1  𝜎𝜎𝑦𝑦1𝑦𝑦1

2  0 𝜎𝜎𝑥𝑥𝑦𝑦2  0 𝜎𝜎𝑦𝑦2𝑦𝑦2
2  � . 

Say 𝑥𝑥 is the unknown parameter we wish to estimate based on independent observations 𝑦𝑦1and 𝑦𝑦2. 
By applying the formula for conditional distribution, one can see that the variance of the estimate 

based on both independent observations (𝑃𝑃[𝑥𝑥|𝑦𝑦1,𝑦𝑦2]) is 𝜎𝜎𝑥𝑥𝑥𝑥2 −  𝜎𝜎𝑥𝑥𝑦𝑦1
2

𝜎𝜎𝑦𝑦1𝑦𝑦1
2 −  𝜎𝜎𝑥𝑥𝑦𝑦2

2

𝜎𝜎𝑦𝑦2𝑦𝑦2
2 , which is at most 

equal to the smaller of the estimates based on individual observations 𝜎𝜎𝑥𝑥𝑥𝑥2 −  𝜎𝜎𝑥𝑥𝑦𝑦1
2

𝜎𝜎𝑦𝑦1𝑦𝑦1
2  and 𝜎𝜎𝑥𝑥𝑥𝑥2 −  𝜎𝜎𝑥𝑥22

𝜎𝜎𝑦𝑦2𝑦𝑦2
2  

(for 𝑃𝑃[𝑥𝑥|𝑦𝑦1] 𝑎𝑎𝑎𝑎𝑎𝑎 𝑃𝑃[𝑥𝑥|𝑦𝑦2] respectively). A smaller variance is being considered as a metric for 
estimator performance here. Indeed, the statement that ‘combining all available information 
always leads to a better estimate’ holds true more generally and can be argued in several ways (eg. 
using information theoretic quantities).  

For the purpose of testing the algorithms, a full simulation platform and a playback simulation 
platform are needed. The first one should be able to simulate the power system responses subject 
to different disturbances to build a diverse library of measurement data. The second one should be 
able to simulate the responses of certain device model driven by the recorded measurement data. 
To test algorithms in a controllable environment, open source software is preferred because power 
system simulation software may have built-in parameter limits and corrections which should be 
transparent to the calibration algorithm. For the full simulation, the full Power System Toolbox 
(PST) setup is used. For the playback simulation, the PST is modified to allow the system outside 
certain device being replaced by recorded measurement data as shown in Fig. 4-1.  
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Figure 4-1. Playback simulation using Kundur 2-area system. 

To use this setup, there are two steps, data preparation step (using full simulation and true 
parameter value) and algorithm testing step (using playback simulation and default/corrupt 
parameter value). For example, if calibrating the parameters in generation plant 1 is of interest, 
several full simulations will first run using the true parameter value. For different simulation runs, 
different types of faults will be applied in the system and the PMU measurement data will be 
collected at bus 1 to build a library of event data. Once enough event data is recorded, the rest of 
the system outside bus 1 will be ignored and use the recorded event data to drive the playback 
simulation of generation plant 1. Both identifiability analysis algorithm and model calibration 
algorithm can call the playback simulation. 

To demonstrate the need for sequential estimation, different trials were randomly defined 
where each trial has different sequence of event (12 events in total, as shown in Table 4.1). The 
single event mode means the parameter calibrated by the first event will be used to predict the 
other events afterwards. The multi-event mode means the model parameter will be calibrated in a 
sequential way, and the prediction error across all events is given. The mean absolute errors 
between measured and simulated real and reactive (P and Q respectively) power responses is 
reported. 

Table 4.1. Sequence of Events setup 

  
Event 
1 

Event 
2 

Event 
3 

Event 
4 

Event 
5 

Event 
6 

Event 
7 

Event 
8 

Event 
9 

Event 
10 

Event 
11 

Event 
12 

Trial
-1 4 36 3 2 5 26 30 31 24 16 17 1 

Trial
-2 36 5 4 1 3 24 2 31 30 26 17 16 

Trial
-3 17 4 16 31 2 3 24 36 1 5 26 30 

Trial
-4 24 31 5 36 3 4 30 2 26 17 16 1 
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Fig. 4-2 shows a typical result of the trials. The multi-event-based calibration results in a 
significant lower prediction error, compared to those used only one single event. Note the single 
event mode shows the current practice in the industry. When needed, the generator owner hires 
testing team to validate and calibrate some parameter, and then keep it in the dyd or dyr file for 
use for several years. 

 
Figure 4-2. Comparison of response error: single event based vs. multi-event based. 

 

4.2 Event Selection  
Multiple events over different time can be perceived by PMUs at each generator/load terminal 
(POI). Using every perceived event to initiate the model validation and calibration process can be 
very time consuming and may not be cost effective. There is a need to automatically determine 
which event to be used for the model validation and calibration process.  
 
Some grid events may happen frequently around a PMU. These events may carry similar dynamic 
modality information and using them to conduct MVC may not be able improve the model 
performance. Other events may happen infrequently or with little observability at the PMU, but 
they may carry valuable dynamic modality information for the MVC purpose. There is a further 
need to ensure the event selected can increase the diversity of the dynamic modality. 
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Figure 4-3. Automatic event selection algorithm [59]. 

 
An automatic system for event selection for mode validation and calibration [59] would include: 

1. Feature extraction module, wherein features related to the system dynamics are extracted 
from the time series during event, including peak value, rising time, settling time, damping 
ratio, 2nd largest deviation over the 1st largest deviation of frequency, voltage, power, and 
reactive power, ROCOF, energy function, cumulative deviation in energy, etc. 

2. Dynamic modes evaluation module, wherein the overall magnitude and diversity of the 
dynamic modes excited are identified and evaluated, including residual analysis based on 
auto-associated models, such as Auto-Encoder (AE); the input and output of the AE are 
used to generate the overall magnitude and the diversity (variance of the residuals). 

3. Similarity based evaluation module, wherein the identified features are compared with the 
instance in the existing feature database, the similarity index (like cosine or distance based) 
is generated to determine how diverse the newly identified event is from the event 
identified before. 

4. Decision making module, wherein the result of the dynamic modes evaluation results and 
the similarity-based evaluation results are synthesized or fused to determine whether the 
new event will be used for MVC or not. The decision fusion process can use max, min, or 
weighted sum on both outputs. 

5. The user interface, as shown in Fig 4-4, indicates some details in the event detection.  
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Figure 4-4. Automatic event selection user interface [59]. 

 

4.3 Multiple Event Model Calibration  

4.3.1 Simultaneous Calibration 
For a single event, the model calibration problem can be formulated as a minimization problem 

with objective function: 

 𝑓𝑓𝑖𝑖(𝑥𝑥,𝑤𝑤) =  ∑ 𝑤𝑤𝑝𝑝(𝑡𝑡) ∗ �𝑦𝑦𝑝𝑝
𝑚𝑚(𝑡𝑡)−𝑦𝑦𝑝𝑝(𝑥𝑥,𝑡𝑡)

𝑦𝑦𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
�
2

+ 𝑤𝑤𝑞𝑞(𝑡𝑡) ∗ �𝑦𝑦𝑞𝑞
𝑚𝑚(𝑡𝑡)−𝑦𝑦𝑞𝑞(𝑥𝑥,𝑡𝑡)

𝑦𝑦𝑞𝑞𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
�
2

𝑇𝑇
𝑡𝑡=1          (1) 

 

where t represents each point of time in the event, T is the event time length, wp(t) is a weight 
vector assigned along the time axis to the active power p, and wq(t) is a weight vector assigned 
along the time axis to the reactive power q. This weight variable allows the user to emphasize a 
certain segment in the event with abundant transient information. 𝑦𝑦𝑝𝑝𝑚𝑚(𝑡𝑡) represents the measured 
active power at time stamp t, 𝑦𝑦𝑝𝑝(𝑥𝑥, 𝑡𝑡)  represents the simulation result at time stamp t with 
parameter x, 𝑦𝑦𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 represents the base value of the active power p, which could be 100 MVA for 
example. 𝑥𝑥𝑙𝑙, 𝑥𝑥𝑢𝑢 represents the low bound and high bound for parameter x. 

    For multiple events, the model calibration problem is the minimization of the below 
equation.  The equation keeps 𝑥𝑥0 as an input variable to highlight the model calibration is a non-
convex problem wherein the parameter searching depends on the initial parameter value 𝑥𝑥0.   
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 �𝑓𝑓𝑖𝑖(𝑥𝑥,𝑤𝑤,𝑥𝑥0) 
𝑁𝑁

𝑖𝑖=1

 (2) 

 

One straightforward way is simply adding multiple response error terms along multiple data 
segments, each segment as one event, to form the objective function in (1). This may require 
multiple calls to each simulation case since each event playback simulation has its own initial 
condition.  The aggregation of response errors from multiple events may come directly from 
response curve stitched together if those events are sequential events with the same initial 
condition [60].   

The generation plant to be calibrated is the generation plant 1 in the standard Kundur 2-area 4 
machine test system. The first step is generating the measurement data. To do that, line faults are 
applied with different locations and different fault durations then record the terminal bus voltage, 
phase angle, real and reactive power at generation plant 1. After the measurement data is recorded, 
replace the system outside generation plant 1 with a voltage source represented by the 
measurement data. Then the generation plant response driven by the measurement data can be 
acquired from playback simulation. If the real and reactive power output from the playback 
simulation matches the measurement data, the model of generation plant 1 is consider accurate. 
The generation plant has one 6th order generator, one 1st order exciter and one 3rd order governor. 
The total number of parameters is 24. It is worth mentioning that the methodology and platform 
are not limited to Kundur 2-area system and generation plant with specific types of generator and 
control devices, it can be applied to more complex systems and models. By applying 3-phase line 
to ground fault at different location and with different duration (0.1 s, 0.15 s, 0.2 s), 39 events are 
created. Using the K-medoids clustering approach, 10 characteristic events are chosen. A wide 
variety of events are covered in the selected 10 events (local oscillation, inter-area oscillation, 
generation-load imbalance, etc.). In real life, the information of the location and duration of those 
events are not needed. They are presented in Table 4.2 to show that the capability of the framework 
to reduce the event number merely based on the signature of P, Q measurement. 

The 5 most identifiable parameters are chosen using the identifiability analysis approach. After 
calibrating the 5 most identifiable parameters simultaneously for all 10 characteristic events, the 
P, Q responses from the model match better to the measurement as shown in Fig. 4-5. Since not 
all corrupt parameters are identifiable, it is difficult to calibrate all corrupt parameters to their true 
value. However, with the framework, the calibration results simultaneously satisfy multiple events. 
When a new event with similar characteristic as the chosen events occurs, the calibrated parameters 
will still provide accurate response. The limitation of the approach is that its performance relies on 
the diversity of the available events. When the number of available events is limited, it is still 
possible that the framework could fail when a characteristically unique event happens. However, 
it is expected that as the library of events becomes more diverse, the framework will become more 
robust.  
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Table 4.2. Characteristics of Events. 
Event No. Fault Location Fault Duration (s) 

2 Line 2-20 0.1 

3 Line 3-4 0.1 

4 Line 3-20 0.1 

16 Line 3-4 0.15 

17 Line 3-20 0.15 

24 Line 13-101 0.15 

26 Line 13-120 0.15 

30 Line 3-20 0.2 

31 Line 3-101 0.2 

36 Line 13-101 0.2 
 

Table 4.3. Estimation of the most identifiable parameters. 
 X’d (p.u.) X”d (p.u.) T’do (s) Xq (p.u.) X’q(p.u.) 

Def 0.36 0.24 9.60 1.80 0.66 

True 0.30 0.25 8.00 1.70 0.55 

Tuned 0.30 0.24 8.05 1.58 0.55 
 

 
Figure 4-5. Simultaneous calibration results of 10 characteristic events. 
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4.3.2 Sequential Calibration 
Since grid disturbances occur intermittently, the user of the calibration tool would need to re-

calibrate model parameters in a sequential manner as new disturbances come in. In this scenario, 
the user has a model that was calibrated to some observed grid disturbances to start with and 
observes a larger than acceptable mismatch with a newly encountered disturbance. The task now 
is to tweak the model parameters so that the model explains the new disturbance without 
detrimentally affecting the match with earlier disturbances. Of course, an obvious solution would 
be to run calibration simultaneously on all events of interest strung together but this comes at the 
cost of computational expense and engineering involved in enabling running a batch of events 
simultaneously. It would be far more preferable if some essential information from the earlier 
calibrations runs can be used guide the subsequent calibration run that helps explain the new 
disturbance without losing earlier calibration matches.  

Fig. 4-6 shows an example of how the user could calibrate the model as multiple events come 
in a sequential manner at different time of history. Each new calibrated model parameter set will 
be based on the previous calibrated model parameter set and the newly arrived event. To avoid the 
parameter traps in the local optimality for the newly arrived event, each newly calibrated model 
parameter set would be evaluated against all the available events to check the overall performance. 
The best parameter set will be selected based on the highest model validation performance. Note 
the order of the event, the forgetting factor of the past events, and the performance metrics will 
affect the performance of this algorithm. 

 
Figure 4-6. Illustration of sequential model calibration algorithm. 

The framework of Bayesian estimation has been used to develop a sequential estimation 
capability into the existing calibration framework. The true posterior distribution of parameters 
(assuming Gaussian priors) after the calibration process can be quite complicated due to the 
nonlinearity of the models. The typical approach in sequential estimation is to consider a Gaussian 
approximation of this posterior as is done in Kalman filtering approaches to sequential nonlinear 
estimation. In the nonlinear least squares approach, this boils down to a quadratic penalty term for 
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deviations from the previous estimates, and the weights for this quadratic penalty come from a 
Bayesian argument.  

Given a set of events in the pool for training and a nonlinear parameter estimation algorithm 
for curve fitting, model calibration procedure can be performed in the following way.  

The training starts by randomly arranging all the training events to create multiple sequences 
of events. An event appears at least once in each sequence. The multi-stage training is performed 
with each of the sequences. During multi-stage training, an event data is given as input to curve 
fitting algorithm in each stage depending on its order in the sequence. The parameters are 
calibrated in each stage to minimize the mismatch between the event true response to that of the 
simulation engine. After getting acceptable accuracy on the curve fitting results at the end of each 
stage, these calibrated parameters are passed on to the next stage of training and becomes the 
starting point for the algorithm while training with the next event in that sequence.  

Multiple staging ensures that multiple disturbance events participate in the process of model 
calibration. Randomness in the arrangement of events in each sequence ensures that all the events 
were given equal priority for training. The parameter sets calibrated during multiple stages of every 
training sequence can then be compared against each other to find out the best set of calibrated 
parameters which minimizes the training error also called as mean response error (MRE) uniformly 
for all events in the training set. The decision on selection of final set of calibrated parameters 𝑥𝑥 
can be taken based on minimum over total mean response error (TMRE) which is the MRE 
averaged over all K training events for each calibrated 𝑥𝑥. When the true parameters are known, the 
mean parameter error (MPE) can be calculated as below equation, where 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 represents the true 
parameter set. 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑘𝑘) =
1
𝑇𝑇�

|𝑦𝑦𝑚𝑚(𝑡𝑡,𝐸𝐸𝑘𝑘) − 𝑦𝑦(𝑥𝑥, 𝑡𝑡,𝐸𝐸𝑘𝑘)|
𝑇𝑇

𝑡𝑡=1

 (3) 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑥𝑥) =
1
𝐾𝐾�𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥,𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

 (4) 

 𝑀𝑀𝑀𝑀𝑀𝑀(𝑥𝑥) =
1
𝑇𝑇�

|𝑥𝑥 − 𝑥𝑥𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡|
𝑇𝑇

𝑡𝑡=1

 (5) 

The framework for multi-event model calibration is tested on playback simulation engine 
platform created using Power System Toolbox (PST). A single generation plant of six order 
generator model with a first order exciter and a third order governor in Kundur’s 4-machine 2-area 
system is considered for model calibration in this work. Total 24 parameters of the generation 
model are being calibrated using the approach. Disturbance events such as 3-phase line fault at 
different locations and with different duration (0.1 s, 0.15 s, 0.2 s), 39 events disturbances were 
created in the system with a known set of generator parameters. The measurements such as voltage, 
angle, active power P, and reactive power Q at the point of common coupling of generation plant 
1 were recorded. Among these, 12 events which are representative of generator load imbalance, 
local and inter-area oscillations in the system were considered in the training pool events. Total 8 
generator parameters out of 24 were then corrupted.  
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Table 4.4. Initial, True and Tuned Parameter for Kundur System. 

Parameter Names Initial TRUE Tuned 
leakage reactance (p.u.) 0.21 0.2 0.1998 
d-axis synchronous reactance (p.u.) 1.5 1.8 1.8011 
d-axis transient reactance (p.u.) 0.36 0.3 0.2999 
d-axis subtransient reactance (p.u.) 0.3 0.25 0.2501 
d-axis open-circuit time constant (sec) 9.6 8 8.0084 
q-axis synchronous reactance (p.u.) 2.04 1.7 1.7001 
q-axis transient reactance (p.u.) 0.66 0.55 0.5501 
q-axis open-circuit time constant(sec) 0.5 0.4 0.4002 

 

The calibration is performed in multiple stages wherein each stage uses a randomly selected 
event from the pool of 12 training events. The multiple stage based training is repeated for different 
sequence of training events. Fig. 4-7 shows the results obtained with 5 sequences with 2 sub-
figures as the TMRE obtained with the calibrated parameter set in each stage. It’s clear from Fig. 
4-7 that for all the sequences, both MRE and MPE reduces reasonably in each stage. With more 
training events used for calibration, the parameters fall reasonably close to true set of parameters. 
Note that the process of sequential model calibration exploits the parameter set obtained from 
previous training stage, which can be both advantageous/disadvantageous for some sequences. At 
any stage, if the tuned parameters are close to true solution, further training leads to better solution. 
However, if an event utilized in a training stage led to a solution which turned out to be a local 
minimizer of the response errors for all events, the future training stages may not improve the 
situation. A simple way to tackle this problem is to calibrate with different order of events in 
different sequence. This phenomena can be observed in Fig. 4-7(b) which shows the evolution of 
error of the calibrated parameters during training stages carried out with 5 sequences. All the 
sequences except sequence-1 and 2 lead to lesser parameter error. For those two sequences, the 
MPE does not improve from the first stage of training. The best set of parameters was obtained 
from sequence-3 in the 12th stage of training. Table 4.4 lists the true, corrupted and best set of 
calibrated vales of the parameters obtained throughout all the stages based on TMRE index. All 
the parameters converge to very close to true parameters. Thus, a sequential way of multiple event 
model calibration with multiple sequences has the potential to drive towards true parameter set 
[48]. 
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Figure 4-7. Fitting errors for parameter and response across 12 events with 5 different 

sequences. 

4.3.3 Distributed Calibration 
As more events and/or larger systems are analyzed, there is a need to improve the scalability 

of the model calibration.  In addition, there is a need for calibration results to be robust against 
defective datasets and/or events.   

A master-client computation system has been designed to handle multiple event data, as shown 
in Fig. 4-8. The modified MVC engine 502 deploys model validation and calibration tasks in a 
distributed and collaborative manner using the master-local nodes configurations described herein. 
The master node 508 allocates and transmits event data 308, system configurations (dynamic 
model set-up), consensus parameters, best parameter, and penalty gain to the local nodes 510. The 
local nodes 510 transmit updated search parameters and integration errors to the master node 508 
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based on the received datasets. The collaboration between the master node and client nodes will 
improve the convergence, speed, and accuracy of the model calibration. The master node 508 and 
each local node 510 may be configured as separate processor cores, virtual machines, multi-thread 
computation with concurrency at a single computer, and/or heterogeneous computation across a 
network of computers. 

 
Figure 4-8. System architecture for distributed power system model calibration [61]. 

 
Figure 4-9. Master/Client Nodes for distributed power system model calibration [61]. 
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As shown in Fig. 4-9, each local node 510 includes an event 602, a calibration algorithm 604, the 
simulation engine 316, and an asset model 606, each local node searches for optimal parameters 
separately and independently. The search parameters are exchanged and aggregated by the master 
node 508. The exchange and aggregation are performed at a certain time interval. The master node 
508 then distributes the aggregated information to each local node 510 for further search. This 
process is repeated until a convergence is reached. Variant alternating direction method of 
multipliers (ADMM) algorithms may be employed for processing multiple events in a distributed 
system, as shown in Fig. 4-10. The interested reader is referred to [61] for more details. 

 
Figure 4-10. Master/Client Nodes for distributed power system model calibration [61]. 
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5 Conclusions 
This white paper summarizes the latest progress on the power system model validation and 

calibration using PMU data, including: 

1. Comprehensive and automated model validation procedure (model type, parameter 
compliance to NERC valid lists) beyond a simple playback response comparison. 

2. Systematic performance metrics for model validation (time domain, frequency domain, 
separation of oscillatory and governor response). 

3. Advanced model calibration algorithms. 

• Parameter selection approaches including SVD, Similarity based, Empirical 
Gramian based methods. 

• Parameter tuning approach including ensemble Kalman filter, trust region 
optimization, black box optimization, Bayesian optimization, machine learning 
based tuning algorithms.  

4. Trustworthy MVC framework by including a post verification step for system stability, 
model & parameter validity. 

5. Multiple Event based MVC. 

• Automatic event selection algorithm (feature extraction, transient richness, and 
diversity evaluation modules). 

• Multi-event calibration algorithms, including simultaneous calibration, 
sequential event calibration and distributed calibration.  

6. Needs for public dataset for benchmarking MVC toolsets.  

It is important to point out the limitations of the PMU-based parameter model validation and 
calibration: 1) its sampling frequency is limited; and 2) observations from only POC data are also 
limited [38]. Therefore, some model errors cannot be corrected through parameter calibration 
using measurements from PMUs. Also, parameters cannot be estimated reliably if they have small 
trajectory sensitivity, which is also referred to as “ill-conditioned.” 

Some future directions include but not limited to: 

1. The lack of public available dataset inevitably hinders the development progress of the 
MVC toolset. So far, the only benchmark dataset for evaluating the MVC algorithm is from 
the 2017 NASPI workshop [62]. There is still a need to provide public dataset for 
evaluation of the model validation and calibration algorithm. 

2. There is a need to make available open-source MVC toolset to allow developers from 
different domains (machine learning, complex systems, control engineering, power system, 
and optimizations) to advance this area. 

3. The developed algorithms, software toolset should be extended to the renewable system 
models with higher resolution event data such as point on waves or digital fault recorder. 
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