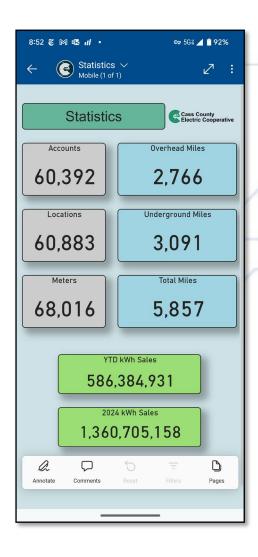
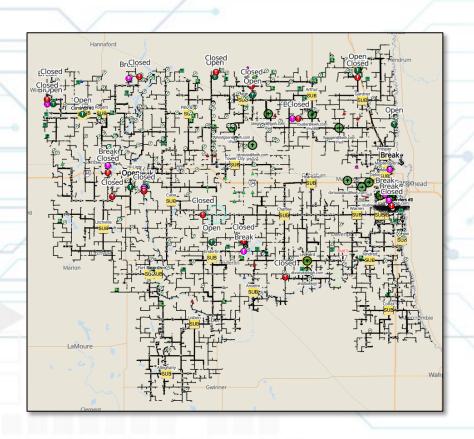
The Most Accurate Distribution System Model in North America

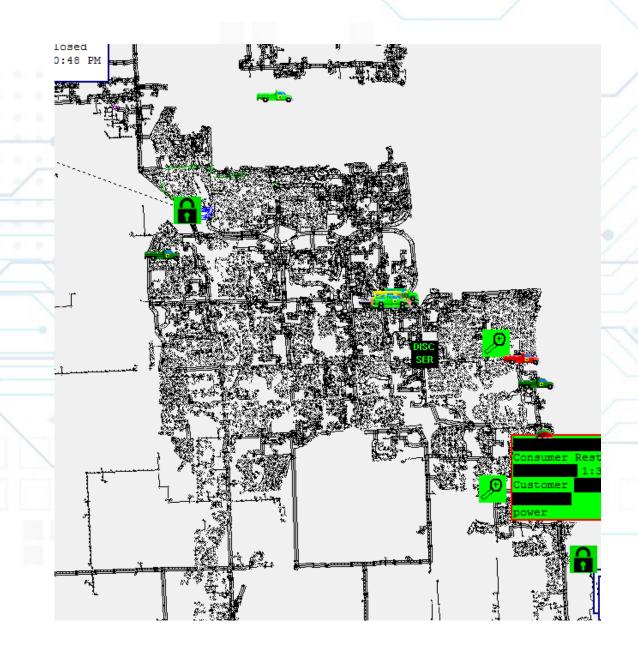


Nick Ludowese, Cass County Electric Cooperative

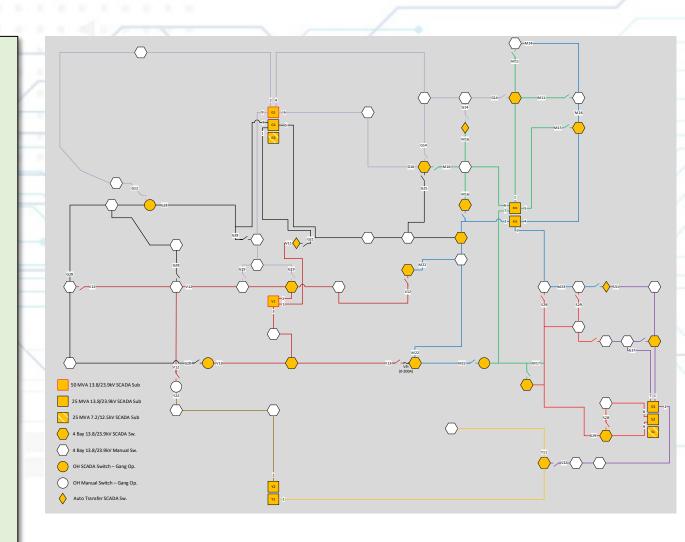


Bryce Johanneck, Quanta Technology

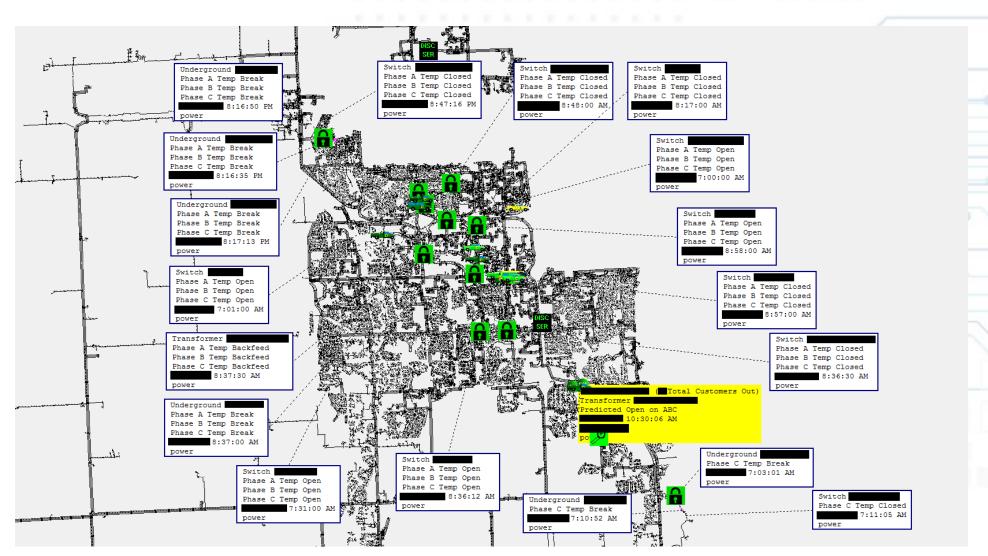
CCEC Statistics


- Mixed 7,200/12,470 v and 13,800/24,000 v
- 42 Substations
 - 9 on 13.8kV
- 80% Urban
- 100% SCADA
 - 35 SCADA switches
 - 250 switches
 - 1 auto transfer switch
- 100% AMI TWACS PLC
 - Feeder detection urban subs

Growing Pains


- 1,500- 2,000 new meters per year
- 1,800 Work Orders per year

- Very inaccurate GIS system spatially and electrically
- Ties between newly tied subs didn't phase because of bad tagging
- OMS model only updated yearly
- Stacks of GIS work orders not posted to the model
- Thousands of missed reads on TWACS meters



High Level One Line

- Looped system
- 49,000 Meters
- 24 Feeders
- 250 Pad Mount Switches
- Tens of Thousands of Transformers
- Tens of Thousands of medium voltage junctures
- Fractional % provisions for instrumentation

Monday Morning

Distribution Switching Example & Quantity

Engineering and Operations

Date:

To: Power Control, Linecrew

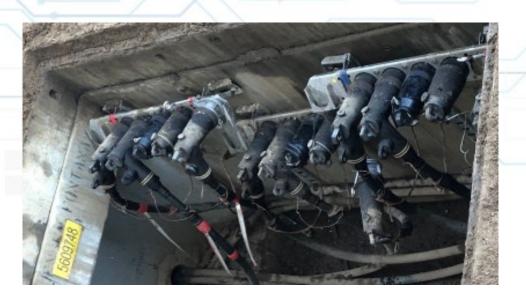
From:

Re: Switching to isolate cable to cut in junction box and change feeds to lift station. Outage is scheduled from 9-11 a.m. on

- 1. Power Control get permission to tie S #2 and #3
- 2. Power Control set regulators on S #2 and #3
- 3. Set VFI going south/west in switch A to 200A
- 4. Close tie in transformer B
- Open going north in transformer C
- 6. Pull and park A, B, C phase elbows going south in switch A
- After new junction box is cut in and ready to move east feed out of transformer C, move on to step 8, there will be an outage for Z meters.
- 8. Open B phase going north out of transformer B
- 9. Open A phase going east out of transformer D
- 10. Open C phase going east out of transformer E
- 11. Pull and Park A, B, C phase elbows going east and west on feed thru insert on
- 12. Remove feed thru insert in transformer C
- 13. Plug back on cables feeding west in transformer C

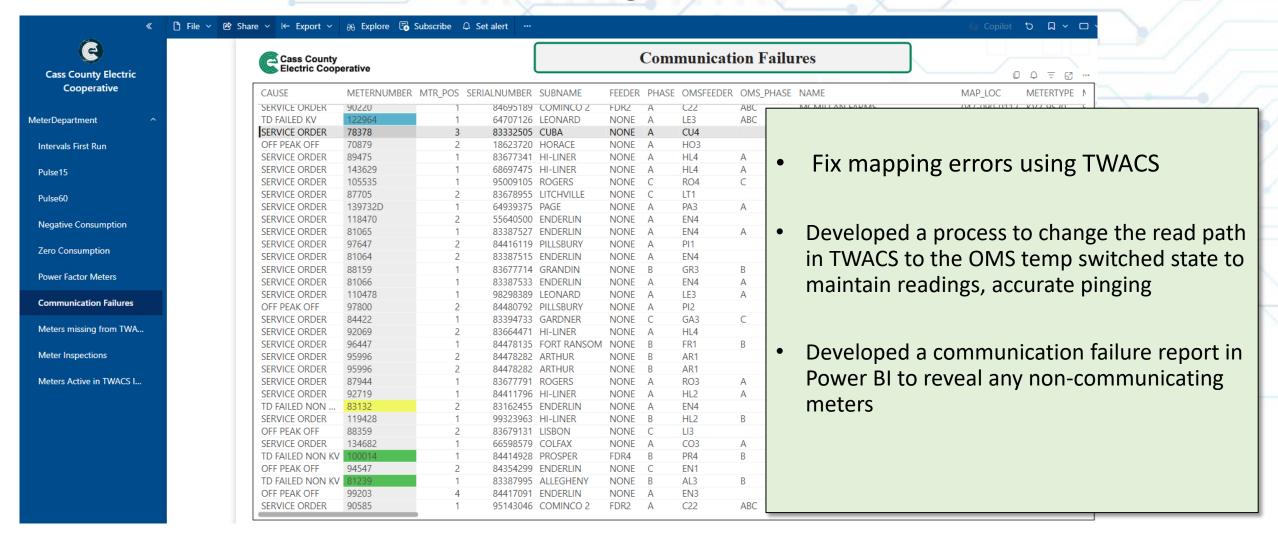
Note: Power control check for any hold tags in area.

Back to normal:


- 1. Make sure VFI going south/west in switch A is set to 200A
- 2. Power Control get permission to tie S #2 and #3
- 3. Power Control set regulators on S #2 and #3
- 4. Plug on A, B, C phase elbows going south in switch A
- 5. Close B phase going north in transformer B
- 6. Close A phase going east in transformer D
- 7. Close C phase going east in transformer E
- 8. Close in going north at transformer C
- 9. Open back at normal open going north in transformer B

Day of Week	Day Offset	Quantity of Meters Impacted	
Monday	DAY	7916	
Sunday	DAY-1	0	
Saturday	DAY-2	0	
Friday	DAY-3	1122	
Thursday	DAY-4	2	
Wednesday	DAY-5	3850	
Tuesday	DAY-6	9115	
Monday	DAY-7	0	
Sunday	DAY-8	0	
Saturday	DAY-9	0	
Friday	DAY -10	0	
Thursday	DAY -11	0	
Wednesday	DAY -12	0	
Tuesday	DAY -13	1	
Monday	DAY -14	4	
Sunday	DAY -15	0	
Saturday	DAY -16	0	
Friday	DAY -17	4	
Thursday	DAY -18	582	
Wednesday	DAY -19	0	
Tuesday	DAY -20	1	
Monday	DAY -21	592	
Sunday	DAY -22	0	
Saturday	DAY -23	0	
Friday	DAY -24	0	
Thursday	DAY -25	0	
Wednesday	DAY -26	0	
Tuesday	DAY -27	0	
Monday	DAY -28	367	
Sunday	DAY -29	0	
Saturday	DAY -30	0	
Friday	DAY -31	182	

How do we fix it?


- Moved the plant to GPS Accurate Aerial photography
- Line Crews, Pole Testers collected plant data
- Used Phase ID tool to accurately phase the TWACs installations
- Retaped the phasing in the field
- Created an Oracle/SQL procedure to compare TWACS and GIS/OMS sub feeder phase to correct the GIS/OMS.
- Implemented electronic staking and a policy of posting work orders to GIS as soon as they are energized.
- Milsoft's circuit diagnostic tool to fix any incorrect circuit element definitions

How do we maintain it?

What about temp switching?

Current Use Cases and Benefits

- Communication failure report
 - Missed switching
 - o GIS errors
 - Unreported outages
 - Power theft
 - Bad meters
- OMS that accurately represents the current state of the system
 - Safety
 - Switching
 - More accurate outage reporting pinging, statistics
- Miss fewer meter reads
 - Important for Time of Use rates
 - Demand analysis
 - Important for Cost of Service Studies
 - Customer Usage reporting
 - Substation metering vs aggregated meter reading
 - Line losses
 - Wholesale Power billing review
- More accurate load studies
- More accurate switching procedures
- Live field viewer with outage and tracing

Important thoughts

- All made possible because of data system integration GIS, OMS, AMI, CIS
- Must post construction work to the model as energized

The side effect of TWACS power line communication is that you get precise knowledge on an endpoints sub, feeder, and phase.

Medium Voltage Junctions

...Switches, Elbows etc.

Distribution Switching Present State & Industry Trends

- 2018: 250 Distribution
 Switching Orders moved
 greater than 500 meters
 to a different Sub,
 Feeder, Phase for more
 than 1 hour
- Found 18% of Meters with a change to their Sub, Feeder, Phase in one day
- Found Sub, Feeder changing most often as in Phase ties are most beneficial to Ops dept

Utility 1

68K Meters

- 2019: 24,404
 executed switching
 steps in 561 total
 Switching Orders
- 2020: 27,685
 executed switching
 steps in 700 total
 Switching Orders

Utility 2

130K Meters

- Thousands to Tens of Thousands (minimum #) of meters change their Sub/Feeder/Phase changes per day
- 220K Meters
 Connected to the wrong Sub in GIS & OMS

Utility 3

1.5M Meters

- ~30,000 Switch Plans/year
- Disabled Distribution
 Remedial Action Schemes
- FLISR disabled permanently
- 4 kV to 12 kV conversions not in OMS

Utility 4

1.5M Meters

- 16,000 Temp Ops in OMS in 9 months
- 8,000 at a SCADA device
- 8,000 at non-SCADA devices

- Distribution System is modeled in 5 different pieces of software (OMS, GIS, Synergi, ADMS, and CYME)
- Linemen and System Operators use the model they maintain with a sharpie and a ruler
- Questioning ADMS value internally
- Not archiving ADMS data for months now

Utility 6

3.7M Meters

Utility 5

3.8M Meters

Contact & Follow Us

Nick Ludowese

Manager GIS & Data Analytics

701-356-4465

nludowese@kwh.com

Nick Ludowese

@NickWLudowese

Bryce Johanneck

Principal Consultant

320-420-1675

bjohanneck@quanta-technology.com

Bryce Johanneck

@brycejohannec