MANAGING GRID STABILITY IN LOW-INERTIA ENVIRONMENTS: PRACTICAL APPROACHES USING REALTIME PMU MEASUREMENTS

Dr. Krish Narendra, COO & Technology Lead

Presentation to NASPI EATT Meeting

July 17, 2025

EPG INTRODUCTION

- Founding: Motivation came from 1996 WECC Blackout Founder was a Senior Executive at SCE who led investigation of Blackout
- Mission: Provide industry leading applications to prevent blackouts by monitoring real time grid dynamics including WAMS, Oscillations, Phase Angles using time synchronized highspeed Synchrophasor data from PMUs
- Company: Established in 2000 HQ in Pasadena, CA, USA
- *Team*: Experienced and internationally acknowledged industry experts in phasor technology
- *Solutions Portfolio*: Most comprehensive portfolio of WAMS and Advanced Applications for Real-time and Off-line Analytics including Oscillations, Inertia, System Strength, LSE, RTCA
- **Deployments**: Leader in large-scale WAMS deployments at more than 40 Grid Operators and Transmission Utilities Globally

AGENDA

- Introduction
- Low Inertia Environments
 - Frequency Response
 - Is Inertia a local or a global phenomena?
- Major Blackout Events Due to Low Inertia
- Real Time Inertia Measurements Using PMUs
- Utilization of FFR for Low Inertia Mitigation
- Conclusions
- Q&A

INTRODUCTION

OVER VIEW & CONTEXT, LOW INERTIA REGIONS & FREQUENCY RESPONSE

OVERVIEW & CONTEXT

Why Real Time Inertia Measurement Matters?

- Inertia is the First Line of Defense
 - Instantaneous stability depends on the kinetic energy from synchronous machines
- Grids Are Losing Natural Inertia
 - Displacing synchronous units with IBRs reduces system resilience
- Not All Inertia Is Equal
 - Operators must distinguish local weak zones from global averages
- Frequency Stability Needs Real-Time Insight
 - ROCOF is local and must be monitored regionally, not just system-wide
- Global Shift Toward Regional Inertia Mandates
 - Utilities worldwide are enforcing minimum inertia and ROCOF thresholds
- Dispatch Without Inertia Visibility is a Risk
 - Economic decisions must factor in inertia to avoid operational surprises
- Operators Need Actionable Tools
 - PMU-based, real-time estimation is essential for tracking, alarming, and responding to low inertia conditions

Key Message:

"Frequency Stability in Modern Grid = Low Inertia Awareness in Real Time"

INERTIA PHENOMENA IS BOTH LOCAL AND GLOBAL IN NATURE

Power Impact= \hat{P}

Common Rotor Angle = $\Delta \partial \rightarrow All Sync M/C$

$$\hat{P} = \Delta P1 + \Delta P2.... \Delta Pn$$

$$\Delta P_j = Ps_j * \Delta \partial$$

$$\Delta P_{j} = \frac{PS_{j}}{\sum PS} \, \widehat{P}$$

$$\mathsf{P}_{\mathsf{j}} = \frac{KE_{\mathsf{j}}}{\sum KE} \, \widehat{P}$$

$$\partial_{j} = \frac{KE_{j}}{\sum KE} \frac{\hat{P}}{PS_{j}}$$

$$\partial_{\mathbf{j}} > \Delta \partial$$
 or $\partial_{\mathbf{j}} < \Delta \partial$

$$ext{ROCOF} = rac{df}{dt} = rac{f_0}{2H} \cdot \Delta P$$

MAJOR BLACKOUT EVENTS - LOW INERTIA A CONTRIBUTING FACTOR

BLACK OUTS: SPAIN, UK, & AUSTRALIA

MAJOR BLACKOUT: LOW INERTIA CONTRIBUTING FACTOR

Spain - 2025

UK - 2019

Australia - 2016

KEY TAKEAWAYS FROM THE BLACKOUTS

- Inertial response starts locally, driven by synchronizing power and kinetic energy in each region
- It evolves into a global response across the interconnected grid
- ROCOF is a local phenomenon and varies by region based on local inertia
- Maintaining healthy local ROCOF is critical to avoid false trips and instability
- Operators need real-time visibility of inertia both regionally and system-wide
- Frequency stability cannot rely solely on global inertia—localized inertia monitoring is essential
- PMUs provide time-synchronized, high-resolution frequency and active power data suitable for real time Inertia monitoring

EPG's REAL TIME INERTIA ESTIMATION USING PMUs

OVERVIEW, CAPABILITIES, PMU LOCATION, VALIDATION, MANAGING LOW INERTIA ALARMS

EPG'S INERTIA MONITORING SOLUTION OVERVIEW

- Centralized Software Based Solution Inertia is estimated from wide-area PMU data aggregated into a single software platform
- Leverage Existing PMUs Solution with Existing PMUs deployed in your grid
- Field Measurement Devices Not Required
- Scalable Software Based Solution
- Flexible Handles Changes in Resource Mix and Topology without need for Additional PMUs
- Additional PMUs Enhance Better Inertial Situational Awareness
- Operational Intelligence Visualization of Real Time Inertia Estimation by Region / Specific Bus location
- Operating Procedures Guidelines for operator action and user defined logic based operating guidelines
- **Deployed at** Electra Net (Australia), TPC (Taiwan), OETC (Oman), IESO (Canada), ERCOT (USA deployment is in progress)

PMU LOCATIONS FOR INERTIA ESTIMATION

Location Type	PMU Objective	
Synchronous Generation Areas	Capture actual frequency and phase angle response from inertia-rich synchronous units	
IBR-Dominant Regions	Detect rapid frequency drop, validate synthetic inertia/FFR injection	
Load Centers	Assess load-side frequency sensitivity, support UFLS scheme design	
Tie-Line and Inter-Zone Buses	Observe inter-area oscillations and power exchange (synchronizing power / torque behavior)	
Isolated or Weak Grids	Monitor local inertial response, improve situational awareness in islanded areas	

REAL TIME SYSTEM INERTIA IMPLEMENTATION & DATA FLOW

- 2. Estimate Active Power and Bus Frequency (or Area Frequency), and Convert the signals to Per Unit, Detrend, apply Low-pass Filter etc.
- 3. N4SID algorithm , and State Space Model $H \propto \frac{1}{2*ROCOF}$
- 4. Validate Order of the Identified Model and check for accuracy
- 5. Evaluate System Inertia

fBUS

REAL TIME INERTIA PROFILE DASHBOARD

INERTIA VALIDATION PROCEDURE USING EPG's TOOL

- Step 1: Validate at Synchronous Generator Buses
 - Use PMUs at high-side terminals of major synchronous machines to estimate local inertia based on measured active power and frequency response
- Step 2: Assess Multiple Synchronous-Rich Areas
 - Compare inertia measurements across different synchronous zones to identify localized strengths and weaknesses
- Step 3: Monitor PCCs (Ponit of Common Coupling) of Large Renewable Injection
 - Use PMUs at renewable hubs (>100 MW) to detect low-inertia signatures and observe high ROCOF behavior in real time
- Step 4: Analyze Tie-Line ROCOF and Inertia Transfer
 - Use tie-line PMUs to assess how inertia varies across regions and how disturbances propagate spatially.
- Step 5: Evaluate Inertia Impact at Critical Loads
 - Monitor ROCOF near sensitive infrastructure (e.g., data centers) to ensure frequency resilience and event survivability
- Step 6: Generate System-Wide Inertia View
 - Aggregate all PMU data and compute global inertia, enabling system-wide stability awareness

UTILITY 1- REAL TIME INERTIA FIELD VALIDATION – GENERATION BUS

10 AM 11 AM 12 PM 1 PM 2 PM 6 AM 3 PM

Avg. Power (MW)

UTILITY 2- REAL TIME INERTIA FIELD VALIDATION – GENERATION BUS

UTILITY 3- REAL TIME INERTIA FIELD VALIDATION – GENERATION BUS

1111

RESPONDING TO LOW INERTIA ALARMS FROM EPG'S TOOLS

Step 1 : Confirm the Alarm

- Identify region, timestamp, and alarm level (Threshold-1 or Threshold-2)
- Verify PMU data quality and Inertia Tool's measurement integrity

Step 2: Assess Real Time Conditions

- Monitor frequency, ROCOF, and generation mix (Synchronous vs. IBR)
- Check AGC status, major tie-line flows, and contingency exposure

Step 3: Evaluate FFR / Synthetic Inertia Readiness

- Identify available FFR/BESS/Grid-forming inverters
- Confirm FFR settings and recent activation records

OPERATOR ACTIONS AND COORDINATION

Step 4 : Preventive Operator Action

- Increase commitment of synchronous generators
- Re-dispatch generation to increase online kinetic energy
- Coordinate with adjacent regions if system risk is regional

Step 5 : Validation & Logging

- Log alarm event; validate Inertia Estimate to confirm the inertia reduction
- Record FFR impact and validate performance for compliance/audits

Step 6 : Use Inertia Trends for Situational Awareness

- Track hourly/daily inertia to identify vulnerable periods
- Alert operators during low-demand/high-IBR windows

UTILIZATION OF FFR TO MITIGATE LOW SYSTEM INERTIA

FFR DEVICES & OPERATOR STRATEGY

BENEFITS OF REAL TIME PMU MEASUREMENTS AT FFR LOCATION

Confirm Actual FFR Power Injection

- PMUs provide high-speed (30–60 Hz) power & frequency data
- Validates whether FFR delivered the right magnitude power and timing.

Assess Response Timing and Duration

- Tracks key FFR metrics: onset time, hold period, and ramp down.
- Evaluates ability to arrest ROCOF and stabilize frequency

Differentiate Inertial vs. FFR Response

- PMUs help separate natural inertia (first 0.5s) from FFR-triggered control
- Crucial for event attribution and performance tuning

Enhance Planning and System Studies

- Real event validation feeds model tuning and system reliability assessments
- Refines FFR deployment strategies

Prove Grid Code Compliance

- Confirms FFR meets activation time, MW delivery, and response windows
- Fulfills regulatory and performance obligations

OPERATOR STRATEGY FOR MITIGATING LOW INERTIA USING FFR DEVICES

Region Type	Typical IBR Share	FFR Devices	Operator Strategy
High-IBR Regions (Wind/Solar >70%)	Very High	BESS, Grid-Forming Inverters, Wind (Synthetic Inertia)	Deploy fast-acting FFR (BESS), validate timing, ensure coordination with sync zones
Wind-Dominant Areas	Moderate to High	Wind Turbines with Synthetic Inertia, Synchronous Condensers	Use wind torque injection + sync condensers to buffer ROCOF and support local voltage
Weak Grid or Low Inertia Zones	Low–Moderate Sync	Synchronous Condensers, Grid- Forming Inverters	Validate inertia floor, deploy inertia-like support for UFLS avoidance
Urban/Critical Load Centers	Varies	Responsive Industrial Loads, BESS	Leverage load curtailment or fast injection to protect sensitive infrastructure
Cross-Border / Intertie Corridors	Regional	HVDC with FFR Mode	Use HVDC for inertia-like power flow response and coordinated multi-area frequency control

CONCLUSIONS

KEY TAKEAWAYS ON EPG'S LOW INERTIA SOLUTIONS

KEY TAKEAWAYS ON EPG's LOW INERTIA SOLUTION

- **Real-Time Inertia Awareness** is critical for grid stability in high-renewable, low-inertia environments
- •No New Hardware Needed EPG's software uses existing PMUs for fast, scalable deployment
- •Regional Insights Matter Inertia and ROCOF vary locally; visibility at bus, region, and system levels helps prevent false trips and blackouts
- •Actionable Intelligence Operators get alarms, inertia trends, and operating guidelines to support real-time decisions
- •Utilization of FFRs PMUs verify actual BESS/inverter response timing and MW delivery during events
- •Supports Grid Codes & Planning Enables inertia threshold tracking, FFR tuning, and informed dispatch strategies
- Field Validated Utilities worldwide have adopted and validated EPG's Inertia Tool

TECHNICAL DISCUSSION

THANK YOU

251 S. Lake Ave., Ste. 300
Pasadena, CA 91101
626-685-2015
Contact@electricpowergroup.com
www.electricpowergroup.com

