

Bayesian Optimization Approach for DER Dynamic Model Calibration

NASPI Work Group Meeting April 15-16, 2025, Minneapolis, MN

Pavel Etingov

PNNL is operated by Battelle for the U.S. Department of Energy

Grid Event Signature Library Project

Project team:

- Shuchismita Biswas (PI)
- Jim Follum
- Tianzhixi Yin
- Tawsif Ahmad
- Kaustav Chatterjee
- Antos Cheeramban Varghese
- Syed Ahsan Raza Naqvi

PNNL provided support to GESL through:

- Collecting synchrophasor measurements for various events
- Developing data readers and API
- Demonstrating the usefulness of the GESL through various use cases
 - Event detection and classification
 - Oscillation Analysis
 - Frequency Response analysis
 - Model validation

This work was funded by the DOE Office of Electricity Transmission Reliability and Renewables Integration (TRRI) Program

DFR A model

DER Modeling

- Increasing DER penetration requires accurate modeling in bulk power system (BPS) studies.
- The DER_A model was introduced to represent both utility-scale and distributed DERs.
- The model has 48 parameters and can function either standalone or within a composite load model.
- NERC published guideline documents providing recommended generic parameters.
- Customization of specific parameters is necessary to reflect actual DER characteristics.

Source: EPRI, "Model user quide for distributed energy resources: DER A model version 1.0," 2016.

- Latest GESL update includes:
 - Distribution-level PMU measurements, including those from BESS and PV, were integrated into GESL.
 - This integration enables testing of various DER modeling and calibration methods using publicly available disturbance records.

Table 2.1: Default DER_A Model Parameters						
1547-2003 fault	IEEE Std. 1547a-2014 Default	CA Rule 21 Default	IEEE Std. 1547-2018 Category II Default	Notes		
0.02	0.02	0.02 0.02		† Note 1		
.99	-99	-99	-99	† Note 1		
99	99	99	99	† Note 1		
0	0	0	0	† Note 1		
0	0	0	0	† Note 2		
0.02	0.02	0.02	0.02	+		
0.02	0.02	0.02	0.02	†		
0	0	20	20	Note 3		
0	0	20	20	Note 3		
.99	-99	-0.0006	-0.0006	Note 3		
99	99	0.0006	0.0006	Note 3		
0	0	99	99	Note 3		
0	0	-99	-99	Note 3		
1	1	1	1	† Note 4		
0	0	0	0	Note 4		
99	99	99	99	†		
.99	-99	-99	-99	†		
0.02	0.02	5	5	Note 3		
1.2	1.2	1.2	1.2	† Note 4		
),44	0.44	0.49	0.44	Note 5		
+VDROP	0.44+VDROP	0.49+V _{DROP}	0.44+VDROP	Note 5		
1.2	1.2	1.2	1.2	Note 5		
-V _{DROP}	1.2-VDROP	1.2-VDROP	1.2-VDROP	Note 5		
0.16	0.16	1.5	0.16	Note 5		
0.16	0.16	1.5	0.16	Note 5		
0.16	0.16	0.16	0.16	Note 5		
.16	0.16	0.16	0.16 Note 5			

Conducted Study and Methodology

- Prior studies largely relied on simulated data, lacking real-world validation of DER model parameters.
- This work evaluates the DER_A model using publicly available PMU measurements from two electric utilities (GESL dataset).
- Measurement play-in approach was applied to validate DER_A models:
 - DER responses were simulated using IEEE 1547-2018 standard (Category II) default parameters.
 - Simulated DER active/reactive power responses were compared with actual PMU measurements.
- Parameters of DER_A were calibrated using iterative Bayesian optimization, following the methodology introduced by Biswas et al. (IEEE Access, 2024*).
- The calibrated DER_A model was verified against independent events (events) not used during calibration) from the GESL dataset, demonstrating improved accuracy and robustness.

DER_A Play-in model validation approach

- DER aggregation represented at the point of interconnection (POI) by an equivalent voltage and frequency source.
- Actual voltage and frequency signals measured at POI are played into simulation software (PSS®E v35, using PLBVF1 model).
 - PLBVF1 model assigned to generator slack bus to play voltage/frequency from recorded PMU data (via PLB file).
 - DERA1 model assigned to distributed generation bus, initially using NERC-recommended parameters (IEEE 1547-2018, Category II).
- Connection line and distribution transformer parameters are based on NERC guidelines.
- The resulting DER active and reactive power responses are compared against recorded PMU data.

Bus 1 (PMU) Bus 2 Equivalent Generator PLBVFU1

Play-in model validation

$$err(\boldsymbol{x})_{t_1}^{t_2} = \left| \int_{t_1}^{t_2} \left[M_1(\boldsymbol{x}) - \min\left(M_1(\boldsymbol{x})_{t_1}^{t_2}, M_2(\boldsymbol{x})_{t_1}^{t_2} \right) \right] dt - \int_{t_1}^{t_2} \left[M_2(\boldsymbol{x}) - \min\left(M_1(\boldsymbol{x})_{t_1}^{t_2}, M_2(\boldsymbol{x})_{t_1}^{t_2} \right) \right] dt \right|,$$

where *err(x)* expresses the mismatch between two time series *M*₁(observed response) and *M*₂(model-based response) in the time range (t_1, t_2) .

This metric allows comparing signals with different temporal resolution and captures system response characteristics around a disturbance (e.g. rate of change, over/undershoot, settling values) without focusing solely on the sample-to-sample mismatch.

Calibration based on Bayesian optimization approach

- Bayesian Optimization (BO) is a constrained, derivative-free optimization method.
 - Ideal for cost functions that are computationally expensive or lack analytical forms.
 - Uses a Gaussian process surrogate model to approximate the cost function.
 - Strategically selects new evaluation points based on prior observations to efficiently find global optima.
 - Bayesian Optimization package was used: https://github.com/bayesianoptimization/BayesianOptimization
- **Parameter Grouping Strategy:**
 - Parameters divided into groups based on their influence on DER behaviors.
 - ✓ Active power-frequency response parameters.
 - ✓ Reactive power-voltage response parameters.
- **Iterative Optimization Process:**
 - Calibrate parameters in one group using Bayesian Optimization, holding other groups constant.
 - Optimized parameters from one iteration inform the next iteration.
 - Process continues iteratively until no significant improvement in cost function is achieved.
- **Benefits of this Method:**
 - Reduces the number of costly simulations.
 - Efficiently identifies optimal parameter sets.
 - Systematically captures interactions between parameter groups for improved model accuracy.

Algorithm 1 Iterative Paramet
1: initialize n_g : no. of parameters
N: max. no. of iterations,
σ : tolerance threshold
2: $n \leftarrow 1$, $\mathbf{x}^* \leftarrow \mathbf{x_0}$
3: while $n \leq N$ do
4: for $i = 1$ to n_g step 1
5: Calibrate parameter
all other parameters fixed
6: end for
7: Evaluate cost function
8: if $n > 1$ then
9: if $f(\mathbf{x_{n-1}}) - f(\mathbf{x_n})$
10: break
11: else $f^* \leftarrow f(\mathbf{x_n})$
12: end if
13: end if
14: end while
15: return \mathbf{x}^*

ter Calibration

eter groups, n: iteration counter, \mathbf{x}_0 : initial parameter estimates,

do

rs in group *i* using BO keeping to obtain parameters \mathbf{x}_{n}

 $f(\mathbf{x_n})$

 $) \leq \sigma$ then

 $\mathbf{x}^* \leftarrow \mathbf{x}_n, n \leftarrow n+1$

- Analyzed data from Providers 11 and 12, including utility-scale solar PV and battery energy storage systems (BESS).
- Chose events with significant frequency deviations and minimal measurement noise.
- Extracted frequency and positive-sequence voltage measurements and saved them into PSS®E-compatible PLB files.
- Performed simulations by playing voltage and frequency measurements into the DER_A model.
- Adjusted model flags and relay settings based on engineering judgment and visual inspection.
- Optimized sensitive parameters using iterative Bayesian optimization.

DER A Model Flags

ICON	Name	Description
М	PfFlag	1: constant power factor, 0: constant Q control
M+1	FreqFlag	1: frequency control enabled, 0: disabled
M+2	PQFlag	1: priority for current limit, 0: Q priority
M+3	GenFlag	1: unit is a generator, 0: unit is a storage device
M+ 4	VtripFlag	1: enable, 0: disable
M+5	FtripFlag	1: enable, 0: disable

- DER_A model contains **six control flags (ICONs)** in PSS®E, which enable or disable specific control functionalities (e.g., frequency and voltage support).
- Appropriate flag values were set using engineering judgment and visual analysis of measured DER responses.
- Provider 12:
 - Observed DER had no active/reactive power response to frequency deviation.
 - Flags set: PfFlag = 0, FreqFlag = 0.
 - Multiple events confirmed BESS/PV units from Provider 12 lack frequency/voltage support functionalities.

_	 	 	
-	 	 	
_			

(1) Constant power factor - on, Frequency control - on; (2) Constant reactive power - on, Frequency control - on; (3) Constant reactive power - on, Frequency control - off.

DER A Model Flags

Pacific Northwest

ICON	Name	Description
М	<i>PfFlag</i>	1: constant power factor, 0: constant Q control
M+1	FreqFlag	1: frequency control enabled, 0: disabled
M+2	PQFlag	1: priority for current limit, 0: Q priority
M+3	GenFlag	1: unit is a generator, 0: unit is a storage device
M+4	VtripFlag	1: enable, 0: disable
M+5	FtripFlag	1: enable, 0: disable

- Provider 11 (Signature ID 6012):
 - BESS actively provided frequency support and reactive power control.
 - Flags set: FreqFlag = 1, PfFlag = 1, PQFlag = 0, GenFlag = 0 (since it's a BESS).
 - Observed frequency-triggered tripping confirmed setting FtripFlag = 1.
 - Default frequency trip parameter (fhtrp = 61.2 Hz) from IEEE Std.1547-2018 was too high.
 - Adjusted frequency protection thresholds to IEEE Std.1547-2003 values (fhtrp = 60.5 Hz, fltrp = 59.3 Hz) to accurately simulate measured device response.

(1) Constant power factor - on, Frequency control - on; (2) Constant reactive power - on, Frequency control - on;

Calibration Results

- DER_A model comprises **48 parameters**, making sensitivity analysis crucial for efficient calibration.
- Leveraged prior studies and engineering judgment to select the most influential parameters for calibration (listed in Table II).
- Parameters were grouped based on the aspects they impact:
 - Active power-frequency response
 - Reactive power-voltage behavior
- Calibration Process:
 - Used three disturbance events from the GESL dataset (Signature IDs: 6011, 6012, 6030).
 - Employed iterative Bayesian optimization to minimize total mismatch between simulated and measured responses.
 - Calibration completed in approximately **15 minutes** (Intel Core i7, 32 GB RAM).
- Results:
 - Calibrated parameters improved the match between DER model responses and actual field measurements.
 - Adjusted frequency protection thresholds ensured accurate tripping behavior aligned with observed data (trip at ~61s).

CON	Name	Description	Initial	Final		
Grou	Group 1: Enabling Frequency Control					
J+1	Trf	Freq. measurement time const.	0.02 s	0.01 s		
J+6	Тр	Power measurement time const.	0.02 s	0.01 s		
J+19	Kpg	PI controller proportional gain	0.1p.u.	0.2 p.u.		
J+20	Kig	PI controller integral gain	10 p.u.	8.5 p.u.		
Group 2: Enabling Voltage Control						
J	Trv	Voltage measurement time const.	0.02 s	0.02 s		
J+4	Kqv	Proportional voltage control gain	0 p.u.	0.9 p.u.		
J+7	Tiq	Q-control time constant	0.02 s	0.025 s		

Calibration results verification

- Independently verify calibrated DER_A parameters using a previously unused event (GESL Signature ID: 6064).
- Calibrated model outperformed the default parameter set.

- Developed a model validation testbed using the measurement play-in approach in PSS®E.
- Evaluated the performance of the generic DER_A model using real-world PMU measurements.
- Demonstrated that commonly used NERC-recommended default parameters may not accurately capture actual DER behavior across diverse scenarios.
- Highlighted the importance of measurement-based verification and calibration for aggregated DER models in reliability studies.
- Future work:
 - Collect and analyze measurements from DER-rich feeders across various operating conditions.
 - Further assess the adequacy and general applicability of DER_A models.