

Inverter-Induced Forced Oscillation Source Location Estimation Using Synchrophasors: SRP Case Study

Together... Shaping the Future of Energy®

Presenter: Lin Zhu, <u>lzhu@epri.com</u>

Team:

- 1. EPRI: Evangelos Farantatos
- 2. SRP: Matthew Rhodes
- 3. UTK: Yan Wen, Hao Fu, Wenpeng Yu, Yilu Liu

NASPI Work Group Meeting Apr 15, 2025 - Apr 16, 2025 Minneapolis, Minnesota

in f

Background: Forced Oscillations

- Sustained oscillations due to equipment failure, inadequate control designs, and abnormal generator operating conditions.
- PMUs are critical in the ability to identify, monitor and mitigate forced oscillations.
- 24 major forced oscillation events reported in "NERC Reliability Guideline: Forced Oscillation Monitoring & Mitigation".
- Example events:
 - EI, 01/11/2019: 0.25 Hz, synchronous generator in Florida
 - WECC, 01/27-28/2022: 0.25 Hz, battery energy storage in Southern CA
 - WECC, 09/20, 11/2-3/2023: 0.20 Hz or 0.25 Hz, battery energy storage in Arizona

Multiple BESS-Induced Forced Oscillations Events in SRP

- During PV/BESS commissioning
- Interacted with WECC NS-A mode
- Forced oscillations observed across major Western Interconnection

September 20, 2023 IBR1 BESS Oscillation Summary

<u>Figure Source:</u> Matt Rhodes and Daniel Goodrich, "Recent BESS Oscillations: Root Cause Analysis and Wide-Area Impacts," NASPI Webinar, 7/10/2024

Date	WECC Impact	Root Cause	Source Type
09/20/2023	NS-A modeOscillations across major WI	 Error in metering loss compensation methodology (Divided by zero) 	Active power control issue
11/02/2023	NS-A modeOscillations across major WI	 Differences in start-up timing across GSUs GSU-level inverter setpoint polarity inversion 	Active power control issue
11/03/2023	NS-A modeOscillations across major WI	 PV output hardcode to 0 for testing (not actual PV output) leading to meter switching logic error 	Active power control issue

NERC Recommended Practices & Mitigation Measures

- Three-phase, five-step approach to mitigate forced oscillations
- Source location and source type estimation are critical for system operators to mitigate forced oscillations

Source: NERC Reliability Guideline: Forced Oscillation Monitoring & Mitigation Sept. 2017

Forced Oscillation Localization Tool (FOLT)

- Wide-band frequency oscillations (< 0.1 Hz to 15 Hz)
- Three different methods for oscillation source location
 - Dissipating Potential method
 - Oscillation Magnitude method
 - Oscillation Mode Angle method
- Source location estimation with confidence index
- Source type estimation: Active or reactive power control issue
- Inside/outside territory identification
 - Usually for interconnection wide forced oscillations
- Does not rely on system topology
- Does not require full grid PMU observability

In Collaboration with University of Tennessee Knoxville (UTK)

EPRI

Forced Oscillation Localization Tool (FOLT)

Synthetic or recorded synchrophasor measurements as input

Configuration:

- Method selection and weight
- Data reporting rate
- Data window selection
- Frequency range selection

Input:

- Voltage magnitude & angle
- Frequency
- PMU location: GPS coordinates/zip code/county name
- Current magnitude & angle (optional)
- Line parameters (optional)

Output:

- Estimated source location with confidence index
- Estimated source type
- Inside/outside territory
- Other intermediate results, e.g., FFT analysis results

Dissipating Potential-Based Source Location Method

- Dissipating Potential (DP) method
 - Generated Dissipating Energy (DE) flows from source to other areas.
 - Estimate DE flow on virtual lines according to PMU locations with frequency and angle.
 - Estimate DP based on the estimated dissipating energy flow.
 - Dissipating energy flows from high DP area to low DP area. Source identified in bus with highest relative potential.

EPRI

High DP

Oscillation Magnitude-Based Source Location Method

Observations

- Source area usually, but not always, has the highest oscillation magnitude
- Method is assigned lowest weight

EPRI

Oscillation Mode Angle-Based Source Location Method

- The dissipating energy flows from the oscillation mode angle leading area to the oscillation mode angle lagging area.
- Method does not require topology information and power measurements
 - Mode angle can be calculated from different types of measurements, e.g., frequency, voltage mag.
- Method is assigned intermediate weight.

Source Type Estimation

- Based on angle difference and magnitude ratio between frequency and voltage measurements
 - <u>Active power control issue (e.g., governor):</u>
 - Oscillation magnitude in frequency > voltage magnitude
 - Oscillation mode angle in frequency leading voltage
 - <u>Reactive power control issue (e.g., exciter):</u>
 - Oscillation magnitude in frequency < voltage magnitude
 - Oscillation mode angle in frequency lagging voltage

Angle difference and magnitude ratio between frequency and voltage measurements

EPC

Grid Observability Expansion Using Linear State Estimation

Improve grid observability by linear state estimation: Estimate voltage magnitude and angle of unmonitored bus using voltage and current measurements from PMUs

Estimated(blue) vs. actual(orange)

- Current measurements •
- Line & Transformer data

Forced Oscillation Localization Tool

	Step 1: Input Data Selection				
	Input Data:	Voltage + Current Data \sim			
V	Voltage Ang:	C:\Users\plzh002\Desktop\for			
	Voltage Mag:	C:\Users\plzh002\Desktop\for			
	Frequency: (optional)				
	Current Ang:	C:\Users\plzh002\Desktop\for			
	Current Mag:	C:\Users\plzh002\Desktop\for			
	Data Rate:	30 frame/second \sim			
\setminus					
	Transformer & Line Data:	C:\Users\plzh002\Desktop\for			
	LocationType:	Latitude&Longitude \sim			
	PMU Location:	C:\Users\plzh002\Desktop\for			
	Power Grid:	WECC ~			
		Load Data			

SRP Case Study

- Received data from SRP
 - Actual PMU data of two actual oscillation events on 11/03/2023 and 09/20/2023
 - GPS coordinates of substations
- Data preprocessing was performed

	Issue	Handling	
1	No voltage angle (SRP did not download them)	Estimated voltage angle using frequency measurement	
2	Missing data	Replaced with the value of previous data point	
3	Channels with no data or constant values (e.g., 60 Hz)	This channel was ignored	
4	V and f of 09/20/2023 event are in different data files	Matched V and f of the same PMU via name mapping	
5	Data format	Converted into FOLT compatible format for V, $\delta,$ f, and GPS coordinates	

Analysis Results of 09/20/2023 Oscillation Event

- Analysis results:
 - Oscillation frequency: 0.21 Hz
 - Source location: PV plant with BESS at Location 1
 - Source type: Active power issue
- Analysis results are correct and accurate

Location ID	Confidence Index	Actual course
1	91.9%	
14	86.2%	
22	66.1%	

Analysis Results of 11/03/2023 Oscillation Event

- Analysis Results:
 - Oscillation frequency: 0.25 Hz
 - Source location: PV plant with BESS
 - Source type: Active Power issue
- Analysis results are correct and accurate

 Location ID
 Confidence Index

 15
 93.1%

 16
 91.5%

 17
 90.2%

- Actual source location
- Different buses in the same plant

Summary and Next Steps

- Forced Oscillation Localization Tool
 - Wide-band frequency oscillation (< 0.1 Hz to 15 Hz)
 - Source location, source type, inside/outside identification
 - Does not rely on system topology
- Case study with SRP's actual PMU data
 - Data processing was performed, e.g., Angle estimation, missing data handling
 - Accurately estimated oscillation frequency, source location, and source type of both events
- Next steps
 - Use synchronized waveform data as input to detect and analyze high-frequency oscillations (Due to synchrophasor's limitations)
 - Field deployment of FOLT online tool

FOLT Online v1.0

- Forced oscillation detection
- Source location estimation
- Source type estimation
- Inside/Outside identification

Streaming synchrophasor data

EPC

FOLT Online: Implemented as an openPDC adaptor + GUI

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2025 Electric Power Research Institute, Inc. All rights reserved