

Cigre JWG C4/C2.62

Review of Advancements in Synchrophasor Measurement Applications

NASPI Work Group Meeting Minneapolis, MN April 15-16, 2025

Terms of Reference (TOR)

C4/C2.62 TOR

- C4: Power System Technical Performance
- C2: Power System Operation and Control

Approved in March 2021

CIGRE Study Committee C4

PROPOSAL FOR THE CREATION OF A NEW WORKING GROUP

JWG ¹ N° C4/C2.62/IEEE		or: Athula Rajapakse (CANADA) Athula.Rajapakse@umanitoba.ca
Strategic Directions #2: 1, 2, 4		Sustainable Development Goal #3:7
The WG applies to distribution networks: ⊠ Yes / □ No		⊠ Yes / □ No
Potential Benefit of WG work #4: 1, 2, 4, 5		
Title of the Group: Review of Advancements in Synchrophasor Measurement		its in Synchrophasor Measurement

Scope, deliverables and proposed time schedule of the WG:

Background:

The commercial use of phasor measurement units by utilities started in the 1990s. A series of IEEE standards were published starting in 1995 to ensure consistent accuracy. Emergence of organizations such as the North American Synchrophasor Initiative (NASPI) has contributed to the deployment in real-world applications. CIGRE has published two major reports on the application of phasor measurement units, including CIGRE TB 702 "Application of PMUs for Monitoring Dynamic System Performance" published in 2017 and CIGRE TB 330 "Wide Area Monitoring and Control for Transmission Capability Improvement" in 2007.

The technology continues to rapidly evolve, and it is important to understand the current state of the technology. In 2017, the most common and mature applications were wide area monitoring, state estimation, and model validation. Out of these three applications, wide area monitoring is becoming common practice for TSOs of electrically interconnected systems. The protection and control applications are emerging. The experience of using remote synchrophasor measurements as feedback control signals is not widely reported by the industry.

IEEE currently has an active task force on Oscillation Source Location and a working group on Power System Dynamics Measurements in the Power System Dynamic Performance committee that should be coordinated with as they are investigating new applications for PMUs. CIGRE has an active working group focusing on PMU-based decision support tools for System Operators (WG C2.18) that will also be coordinated with.

The proposed working group will provide an updated review of specific PMU applications including:

- detection of subsynchronous resonance, very low frequency governor modes, control modes;
- improved situational awareness, PMU-enhanced state estimation (linear, three-phase, distributed, dynamic);
- voltage instability detection;
- on-line and off-line model parameter identification (generator, load, lines, short circuit level):
- emerging applications such as grid code compliance monitoring (voltage and frequency control, fault ride through performance, power quality, etc.), wide area protection and control systems (synchrophasor based backup protection, special protection systems, enhancements to FACTS and HVDC control, etc.).

Working Group Officers & Members

- Convener:
 - Dr. Athula Rajapakse University of Manitoba, Canada
- Secretary:
 - Dr. Dinesh Gurusinghe RTDS Technologies, Canada
- Membership:
 - 38 members from 16 countries

Scope

- 1. To provide an updated overview of synchrophasor technology including standard updates. Cover (micro)PMUs for distribution system applications as an additional area.
- 2. To provide an updated view of industry and academia experience on the concentration, archiving, and use of PMU data.
- 3. To describe emerging applications and any technology gaps such as high dependency on reliable telecommunication, precise time synchronisation, signal latency, etc. requiring further research and development.
- 4. To discuss the end-user's experiences of deploying synchrophasor measurement systems and applications and elaborate additional specially tailored applications for enhancing secure power system operation.
- 5. Elaborate and deliver application examples for new specific PMU applications

Deliverables

- Technical Brochure (TB) and Executive Summary in Electra
- Cigre Science & Engineering (CSE) journal
- Tutorial
- Webinar

Status

- TB draft completed. Will be submitted to Study Committee chairs.
- Expected TB publication by December 2025

Review of Advancements in Synchrophasor Measurement Applications

JWG C4/C2.62

Contributing Members

1	Athula Rajapakse, Convenor	CA
	Udaya Annakkage	CA
	Obusevs Artjoms	CH
	Steven Blair	UK
7	Kalana Dharmapala	CA
	Mladen Kezunovic	US
	Chandan Kumar	IN
	Krish Narendra	CA
	Devinda Perera	AU
_	Anurag Srivastava	US
	Kjetil Uhlen	NO

Dinesh Gurusinghe, Secretary	CA	
Raj Kumar Anumasula	IN	
David Bergman	SE	
Maitreyee Dey	UK	
Evangelos Farantatos	US	
Petr Korba	CH	
Yun Li	UK	
Nuwan Perera	CA	_
Bonian Shi	CN	
Gilles Torresan	FR	
Prasad Wadduwage	SL	-

entributing Corresponding Members

Brian Archer	CA
Jayaraman Ramachandran	UK

Kevin Ostash	CA
Gavan Wijeweera	CA

Copyright © 2025

"All rights to this Technical Brochure are retained by CIGRE. It is strictly prohibited to reproduce or provide this publication in any form or by any means to any third party. Only CIGRE Collective Members companies are allowed to store their copy on their internal intranet or other company network provided access is restricted to their own employees. No part of this publication may be reproduced or utilized without permission from CIGRE."

Disclaimer notice

"CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the information. All implied warranties and conditions are excluded to the maximum extent permitted by law".

ISBN: [to be completed by CIGRE]

TB Content

EXE	ECUTIVE SUMMARY	3
TAE	BLE OF CONTENTS	6
FIG	URES AND ILLUSTRATIONS	10
LIS	T OF ABBREVIATIONS	14
1.	INTRODUCTION	21
1.1	BACKGROUND	
1.2	NEED FOR THE REVIEW	
1.3	OBJECTIVES AND SCOPE OF THE REPORT	
1.3	ORGANIZATION OF THE REPORT	
	REFERENCES FOR CHAPTER 1	
1.5	REFERENCES FOR CHAPTER 1	23
2	ADVANCEMENTS IN THE TECHNOLOGY AND STANDARDS	24
2.		
2.1	SYNCHROPHASOR-BASED WIDE AREA MEASUREMENT SYSTEM	
2.2	STANDARDS	
_	2.2.1 History of Synchrophasor Standards	
_	2.2.3 Communication Standards	
_	2.2.4 Testing Guides and Standards	
2	2.2.5 PDC Guides and Standards	26
2.3	TIME SYNCHRONIZATION	26
2.4	PHASOR MEASUREMENT UNITS	27
2	2.4.1 Distribution PMUs	
2	2.4.2 Distribution PMU Applications	28
2.5	DATA CONCENTRATION	
_	2.5.1 Time Alignment of Data	
_	2.5.2 Data Forwarding	
_	2.5.4 Data Format and Coordinate Conversion	
_	2.5.5 Reporting Rate Conversion	
2.6	TESTING, VERIFICATION AND COMMISSIONING OF PMU/PDC	30
2.7	SECURITY AND CERTIFICATION OF SYNCHROPHASOR SYSTEMS	
2.8	CHAPTER CONCLUSION	
2.9	REFERENCES FOR CHAPTER 2	
3.	SYSTEM ARCHITECTURE, DATA INTEGRATION & PROTOCOLS	3.4
3.1	DATA COMMUNICATION NETWORKS	
	SYSTEM ARCHITECTURE	
3.2	SYSTEM ARCHITECTURE	
	3.2.2 Functional Flexibility	
	3.2.3 Typical Architecture for PMU Installation within Substations	
	3.2.4 Substation to Control Centre Communication Architecture	
3	3.2.5 Recent Trends and Advancements	37

3	6 NASPInet 2.0 Architecture	38
3.3	SCADA/EMS AND WAMS INTEGRATION	39
3		39
3		
3		
3		
3.4	SYSTEM ARCHITECTURE EXAMPLES	41
3		
3	2 Grid-India Real-Time Dynamic State Measurement System	43
3.5	DATA VALIDATION	45
3.6	CHAPTER CONCLUSION	46
3.7	REFERENCES FOR CHAPTER 3	46
4.	APPLICATIONS DEPLOYED IN THE INDUSTRY	48
4.1	IMPROVED SITUATIONAL AWARENESS	48
4	1 Wide Area Monitoring Systems	48
4		
4	3 Data Visualization Methods in Power Systems	
4		
4		
4.2	POST-EVENT ANALYSIS	58
4		
4		
4	3 Validation of RoCoF Relay Operation and Over-Voltage Tripping	
	PMU-ENHANCED STATE ESTIMATION	
4.3		
4		
4	3 Implementation of PMU based State Estimation at Manitoba Hydro	63
4.4	OSCILLATION MONITORING	64
4	1 Monitoring of Electromechanical Oscillations	64
4		
4		
	5 Examples of Oscillation Monitoring and Source Location	
4.5	LONG-TERM VOLTAGE STABILITY MONITORING	74
4.5		
4		
4.6	MODEL VALIDATION AND CALIBRATION	76
4		
4	2 PMU Based Model Verification	78
4.7	CONTROLLER TUNING REQUIREMENTS AND PERFORMANCE VALIDATION	
4		
4		
4.8	GRID CODE COMPLIANCE MONITORING	
4		
4		
4.9	INERTIA ESTIMATION	
4.9		
4	2 Inertia Monitoring in Indian Gird	88
4	3 Inertia Estimations of Scottish Gird	88
4.10	SPECIAL PROTECTION SYSTEMS	
4	0.1 South Australia Wide Area Monitoring, Protection and Control (WAMPAC) Scheme	90

TB Content

4.11 ISL	ANDING DETECTION	95
4.12 WIE	DE AREA CONTROL SYSTEMS	97
4.12.1	HVDC Power Oscillations Damping Control in China Southern Power Grid	97
4.12.2	Wide area damping controller for Pacific DC Intertie	99
4.12.3	Wide Area Damping Control (WADC) in Italy	100
4.13 CH/	APTER CONCLUSIONS	102
4.14 REI	FERENCES FOR CHAPTER 4	102
5. PO	TENTIAL APPLICATIONS	109
5.1 DYI	NAMIC STATE ESTIMATION	
5.1.1	Network and Measurement Model for DSE	
5.1.2	Numerical Solution of DSE	
5.1.3	Maturity Level	110
5.2 PR	OTECTION APPLICATIONS	
5.2.1	Potential Applications of Synchrophasors in Asset Protection	111
5.2.2	Potential Applications of Synchrophasors in System Protection	111
5.2.3	Maturity Level	112
	JLT LOCATION	112
5.3.1	Fault Location in Transmission Lines	
5.3.2	Fault Location in Distribution Systems	
5.3.3	Practical Considerations	
5.3.4	Maturity Level	
	ORT-TERM VOLTAGE INSTABILITY DETECTION	
5.4.1	SVS Assessment Approaches Proposed in Literature	
5.4.2	Practical Considerations	
5.4.3	Maturity Level	118
	ANSIENT INSTABILITY DETECTION	118
5.5.1	Recently Proposed Approaches for Transient Stability Prediction	119
5.5.1	Application Example of Transient Stability Prediction	
5.5.2	Challenges for Data Driven Approaches	
5.5.3	Maturity Level	
	ST FREQUENCY CONTROL	
5.6.1	Non-Estimation-Based Approaches	
5.6.2	Estimation-Based Approaches	
5.6.3	Enhanced Frequency Control Capability Project in UK	
5.6.4 5.6.5	Under Frequency Load Shedding (UFLS)	
	SET MANAGEMENT	
5.7.1 5.7.2	Transformer ageing evaluation	
	Maturity Level	
	NITORING GEOMAGNETIC DISTURBANCES (GMD)	
5.8.1	GIC Monitoring Methodology	
5.8.2	Maturity Level	129
	E OF DIGITAL TWINS FOR SYNCHROPHASOR APPLICATION VALIDATION	
5.9.1	Digital Twins in Power Systems	
5.9.2	Example of Developing a Digital Twin System in a Laboratory	
5.9.3	Use of Digital Twins to Design a Wide-area Damping Controller	
5.9.3.1 5.9.4	Controller Structure	
	,	
	NAMIC LINE RATING	
5.10.1	Ambient Adjustable Rating (AAR)	
5.10.2	Dynamic Line Rating (DLR)	
5.10.3	Use of Synchrophasors	
5.10.4	•	
	APTER CONCLUSIONS	
5.12 REI	FERENCES FOR CHAPTER 5	138

6. O	UTLOOK FOR NEXT 5-10 YEARS	145
6.1 CI	OUD-BASED IMPLEMENTATIONS	
6.1.1	Benefits	
6.1.2	Challenges	
6.1.3	Systems Proposed in Literature	
6.1.4	Future Scope	148
	DLE OF DATA SCIENCE, ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
6.2.1	Artificial Intelligence and its sub-fields	
6.2.2	Areas of Application	
6.2.3	Future Scope	
	NERGIES WITH SYNCHRONIZED WAVEFORM MONITORING	
6.3.1	Applications of Synchronized Waveform Data	
6.3.2	Existing Standards for Waveform Data Encoding and Transfer	
6.3.3	Other Practicalities	
6.3.4	Future Scope	157
6.4 TE	CHNOLOGY GAPS	157
6.4.1	Cybersecurity Concerns	157
6.4.2	Applications facilitating Integration of Renewable Energy Sources	
6.4.3	Standardization and Interoperability	158
6.4.4	Validation of AI and ML Applications	158
6.5 PC	OTENTIAL RESEARCH AREAS FOR THE FUTURE	158
6.5.1	Resilient Communication Networks	158
6.5.2	Cloud Computing for Scalable Data Processing	
6.5.3	Quantum Computing for Grid Optimization	
6.5.4	Edge Computing for Real-time Analysis	
6.5.5	Advanced Linear State Estimation (LSE)	
6.5.6	Real-Time Grid Assessment using LSE Data	
6.5.7	Real-Time Contingency Analysis	
6.5.8	Hybrid Power Flow Analysis	
6.5.9	Advanced Forecasting Models	
6.5.10		
6.5.11		
6.6 CH	HAPTER CONCLUSIONS	159
6.7 RE	FERENCES FOR CHAPTER 6	159
7. C	ONCLUSIONS	165
APPEN	DIX A. SECURITY REQUIREMENTS FOR BULK CYBER ASSETS	167

