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Motivation and Objective

• Good oscillation detection performance is critical for tool adoption and 
supports reliable system operation

• Commercial RMS-energy detectors trigger alarms when the PMU signal’s 
RMS-energy remains above a threshold for a certain duration

• A good RMS-energy threshold:
 Avoids false alarms
 Avoids nuisance alarms
 Has predictable performance for oscillations of interest

• A good thresholding method:
 Supports automation
 Can be implemented readily
 Does not require excessive time, compute power, or storage 
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RMS-Energy Detector

𝑅𝑅𝑅𝑅𝑅𝑅[𝑛𝑛]

Band Selection RMS Calculation

Band Range (Hz)
1 0.01 – 0.15
2 0.15 – 1 
3 1 – 5 
4 5 – 15 or 30

TM. Donnelly, D. Trudnowski, J. Colwell, J. Pierre and L. Dosiek, "RMS-energy filter design for real-time oscillation detection," 2015 IEEE Power & Energy Society General 
Meeting, Denver, CO, USA, 2015, pp. 1-5, doi: 10.1109/PESGM.2015.7286192.
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Detection occurs when the 
RMS-energy exceeds a 
threshold for a specified 
period

RMS-Energy Detector
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• Calculate RMS-energy for 
historical ambient conditions

• Establish a threshold as the 
energy’s mean plus 3 or 4 
standard deviations

• Evaluate on >3 months of data

Current Industry Practice
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Proposed Approach

• Build a statistical model of each signal using a limited amount of ambient data
• Bootstrapping: use the model to generate new realizations of synthetic 

ambient data
• Add oscillations of various sizes
• Run RMS-energy detector with the duration requirement
• Determine threshold that provides desired performance
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Bootstrap-Based RMS-Energy Thresholds

• Represent 𝑥𝑥[𝑛𝑛] as the output of an AutoRegressive (AR) model

• Uses a classic approach based on least-squares curve fitting
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Bootstrap-Based RMS-Energy Thresholds

• Bootstrapping uses information from a statistical sample to generate new 
realizations

• For each signal model, 100 realizations of 𝑥𝑥∗[𝑛𝑛] are generated
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Bootstrap-Based RMS-Energy Thresholds

• Add oscillations of various amplitudes 
• Calculate the RMS-energy

100 realizations for A = 3 MW
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Bootstrap-Based RMS-Energy Thresholds

• Add oscillations of various amplitudes 
• Calculate the RMS-energy

 Due to the use of a statistical model, the 
RMS-energy of the 𝑥𝑥∗[𝑛𝑛] realizations 
can be more extreme than the RMS-
energy of the observed 𝑥𝑥[𝑛𝑛]

100 realizations for A = 3 MW
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Bootstrap-Based RMS-Energy Thresholds

• Determine the threshold by 
considering the probability of 
detecting oscillations of various 
amplitudes

• In practice, this is done for 
realizations from several different AR 
models capturing various operating 
conditions

100% Detection
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Bootstrap-Based RMS-Energy Thresholds

• User input: 
 Nuisance amplitude, e.g., 3 MW
 Max probability of detection, e.g., 0.1%

• Algorithm output:
 Threshold that limits nuisance alarms
 Summary of oscillations expected to be 

detected with various probabilities, e.g., 
50%, 90%, 99.9%

100% Detection
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Utility Example

• Setup
 130 MW signals, 130 MVAR signals
 14400 realizations per frequency band

 48 hours of data from December 2023
 AR model for every 20-minute window
 100 trials per model

 4 frequency bands

• Processing
 PMU analysis (bootstrapping): 3 hours

 Storage: 1 GB
 Generating thresholds: 15 seconds

• Thresholds validated using oscillation 
events gathered throughout 2024
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Amplitude (MW) Detection (%)
3 < 0.1
7 ≈ 50
9 ≈ 90

12 ≈ 99.9

Example 1
Expected Performance:
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Amplitude (MW) Detection (%)
3 < 0.1
9 ≈ 50
11 ≈ 90
15 ≈ 99.9

Example 2
Expected Performance:

Real 8.5 MW Added 3 MW



Thank you
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