

Active and Localized Measurement of Grid Inertia

NASPI Work Group Meeting - April 15, 2025

Alexandra von Meier Independent Consultant vonmeier@berkeley.edu Antonio Enas Principal Power Systems Engineer antonioe@reactive-technologies.com

Low Inertia Systems

Frequency

High regional RoCoF can trigger anti-islanding relays, inducing cascading trips

Frequency can reach UFLS before regulation action timeframe

Why measure inertia?

Understand system dynamics

Protection responds to local, not systemwide conditions.

Either frequency nadir or RoCoF can trip protective relays.

→ Regional inertia monitoring reveals risk exposure to high local RoCoF. Different physical phenomena contribute to Δf and df/dt:

- Rotational inertia
- Fast frequency response
- Governor response
- Load damping
- Network impedance coupling

 \rightarrow Disaggregating contributions is necessary to understand and model the impact of contingencies.

Support efficient grid planning

Planning dimensions include:

- Transmission upgrades to address both bulk power flow and security constraints
- Synchronous condensers
- Limiting RES interconnection

Strategic planning can help avoid expensive operational constraints.

→ Knowledge of regional inertia informs planning for optimal grid investments.

Nonitoring

No visibility of residual inertia

Total inertia not quantified or modelled

Inefficiencies in both system planning and operation

Over-procurement of synchronous condensers, FFR assets

RES and interconnection curtailment

Unnecessary constraints on variable loads and generators

Inertia monitoring comparing options.

Limited modelling and empirical validation of residual inertia

Uncertainty due to small sample size still forces worst-case assumptions, or implies risk

No visibility of residual inertia

Total inertia not quantified or modelled

Inefficiencies in both system planning and operation

Over-procurement of synchronous condensers, FFR assets

RES and interconnection curtailment

Unnecessary constraints on variable loads and generators

Inertia monitoring comparing options.

Event-based

Monitoring

tommuser Inertia ment

Limited modelling and empirical validation of residual inertia

Uncertainty due to small sample size still forces worst-case assumptions, or implies risk

No visibility of residual inertia

Total inertia not quantified or modelled

Inefficiencies in both system planning and operation

Over-procurement of synchronous condensers, FFR assets

RES and interconnection curtailment

Unnecessary constraints on variable loads and generators **Clear understanding of residual** inertia patterns

More precise system planning

Optimized operations

Strategies backed up by real-world data

Enables inertia procurement as an ancillary service for cost-effective grid stability

Financial optimization

Balancing asset investment with well-understood operational measures to ensure the most efficient allocation of resources

Inertia monitoring comparing options.

Limited modelling and empirical validation of residual inertia

Uncertainty due to small sample size still forces worst-case assumptions, or implies risk

No visibility of residual inertia

Total inertia not quantified or modelled

Inefficiencies in both system planning and operation

Over-procurement of synchronous condensers. FFR assets

RES and interconnection curtailment

Unnecessary constraints on variable loads and generators

Location-specific inertia monitoring

Intheritement

Understanding spatial dynamics

Event-based

Nonitoring

- Inertia Estimation

continuous Optimizing investment and ensuring operational security on a regional basis

Clear understanding of residual inertia patterns

More precise system planning

Optimized operations

Strategies backed up by real-world data

Enables inertia procurement as an ancillary service for cost-effective grid stability

Financial optimization

Balancing asset investment with well-understood operational measures to ensure the most efficient allocation of resources

Inertia Measurement Methodology

Modulator¹ injects a small power signal Grid frequency responds by < 1 mHz XMUs² measure RoCoF across the system PMUs measure the power across boundaries

The GridMetrix® platform computes inertia using the swing equation and advanced signal processing

Modulator: an asset such as a battery, ultracapacitor or load bank capable of generating a power signal
XMU: eXtensible Measurement Unit, Reactive Technologies' GPS synchronized accurate measurement unit.

Inertia Measurement Modulator

••• reactive technologies

- MW scale Ultracapacitor, BESS/ESS, IBR plant
- Modulator must be designed to continuously generate a periodic active power modulation signal
 - $\,\circ\,$ Square wave and sine wave, for eliciting different aspects of response
 - $\,\circ\,$ Period of the modulation signal: typically in the range of 1 20 sec
 - Amplitude: 5 MW (10 MW peak-to-peak)
- Footprint: ~15m x 20m (+/- 20%)

Container houses ultracapacitor cells and modules, control system, cooling system, fire detection and suppression

XMU – Grid IoT.

Unlocking the power of edge computing.

Economical visibility of grid edge

- Hassle-free installation: plugged in at mains socket
- Remote device management

Powerful precision

- Adaptive sampling rate up to 48 kHz
- High resolution A/D conversion (16-bit)
- High Accuracy GPS time fleet sync (PPS)
- Adaptive DSP filtering (edge computing)

Clear communications

- Capable of streaming raw analog data
- Up to 120 Hz reporting rate
- Measuring frequency, RoCoF, oscillation parameters, power quality data
- Secure data encryption
- Integrates with GridMetrix cloud

Hidden distribution grid inertia can account for **10-30%** of total system inertia.

Hidden distribution grid inertia can account for **10-30%** of total system inertia.

Most often, inertia is **underestimated**, showing potential for less balancing spend and RES curtailment.

Hidden distribution grid inertia can account for **10-30%** of total system inertia.

Most often, inertia is **underestimated**, showing potential for less balancing spend and RES curtailment.

At times, inertia is **overestimated**, bearing higher security risk to system stability.

Inertia [GWs]

Hidden distribution grid inertia can account for **10-30%** of total system inertia.

Most often, inertia is **underestimated**, showing potential for less balancing spend and RES curtailment.

At times, inertia is **overestimated**, bearing higher security risk to system stability.

"Inertia measurement reveals the time-varying inertial contribution from demand and embedded generators"

Great Britain project summary.

- Dedicated super capacitor
- 5 MW sine wave signal

- Approx. 30 GW of demand
- Approx. 50 % of RES penetration
- Approx. 100-350 GWs of inertia

• 40 XMUs deployed across GB

Frequency (Hz)

2025-03-02 South England event

All Rights Reserved $\ensuremath{\textcircled{O}}$ 2025. Reactive Technologies Limited/Finland Oy

RoCoF (Hz/s)

technoloaies

0.04

0.02

0.00

- 0.02

- 0.04

- 0.06

Frequency (Hz)

ENTSO-E network.

All Rights Reserved © 2025. Reactive Technologies Limited/Finland Oy

2025-02-11 Germany event

Australia project summary.

- Integrated with VBB (300MW BESS)
- 5 MW sine wave signal
- Approx. 10 GW of demand
- Approx. 40 % of RES penetration
- Approx. 100-200 GWs of inertia
- **3 regions** (South Australia, Victoria, New South Wales + Queensland)
- 47 XMUs deployed across the NEM

Residual Inertia in the Australian NEM.

On average 32 GWs of inertia is "hidden"

Regional Inertia in the Australian NEM.

Thank you!

Questions?

Alexandra von Meier Independent Consultant vonmeier@berkeley.edu

Antonio Enas Principal Power Systems Engineer antonioe@reactive-technologies.com