Next-level WAMS Based on Synchro-waveform to Address Emerging Stability Issues

Sungyun Choi, Korea University

NASPI Work Group Meeting and Vendor (Minneapolis, Minnesota)

April 15-16, 2025

- **1. Emerging Stability Issues**
- 2. Necessity of WMU
- 3. WMU Applications for Monitoring Oscillation
- 4. Future Techniques for WMU-based WAMS
- 5. Conclusion

Emerging Stability Issues

• In 2021, IEEE revised and extended the power system stability classification.

- Newly emerging resonance and converter-driven stability issues have necessitated the introduction of a high-resolution measuring device to capture emerging oscillation issues in the monitoring technique aspect.
- Integrating the new measuring device into the power system requires upgrading the existing wide-area monitoring system (WAMS).

Necessity of WMU

- WMU: the next-generation measuring device
 - A waveform measurement unit (WMU) is a high-resolution measurement unit utilizing synchro-waveform technology.
 - WMU's high waveform reporting rate enables the capture of power system oscillations (sub- and super-synchronous oscillations).

Device	Measuring data	Reporting rate	
WMU	Waveform	Max. 128 sample/cycle	WMU (0~1kHz or More)
PMU	Phasor for nominal frequency	Max. 2 sample/cycle	PMU (0~30Hz)
RTU	Scalar (magnitude)	1 sample for a few seconds	Magnitude SCADA (0~3Hz)

 We briefly analyze extended dissipating energy flow (DEF), an <u>oscillation</u> <u>source location method</u>, to validate the necessity of WMU for monitoring oscillation.

DEF:
$$W_{ij}^D = \int \{\Delta P_{ij} d\Delta \theta_i + \Delta Q_{ij} d\Delta (\ln U_i)\}$$

- > $W_{ij}^D < 0$: Energy dissipation at node *i* suggests that the oscillation is being transmitted from near node *j*.
- > $W_{ij}^D > 0$: Energy absorption at node *i* suggests that the oscillation is being transmitted toward node *j*.
- While DEF has traditionally been applied using PMU data, its application based on WMU measurements offers improved detection capability.
- How are DEF by PMU and WMU different in detecting oscillations?
- We analyze DEF on two oscillation cases to identify oscillation source location.
 - Case1: converter-driven stability (due to IBR PLL under weak grid)
 - > Case2: electrical resonance stability (between IBR and series capacitor)

- DEF analysis Case1: converter-driven stability
 - DDSSO* occurred by untuned control parameters of IBR PLL under a weak grid.
 - The IBR output suddenly increased at 1 sec, injecting a disturbance into the grid.

- DEF analysis Case1: converter-driven stability
 - Comparing DEF using WMU and PMU
 - The WMU-based DEF analysis identified the IBR injection point as the source of the oscillation.
 - > However, DEF using PMU figures out that the DEF is near zero.

- DEF Analysis Case2: electrical resonance stability (Interaction between IBR and series capacitor)
 - Circuit breaker 884, 885 opened at 2 sec.
 - Circuit breaker 8S31, 8S33 opened at 2.5 sec.
 - → The <u>WPP is directly connected to the series capacitor</u>, and it causes electrical resonance.
 - 8S40 closed at 4.5 sec to bypass series capacitor.
 - \rightarrow It restored to the steady state.

- DEF Analysis Case2: electrical resonance stability (Interaction between IBR and series capacitor)
 - > DEF using WMU captures oscillation severity clearly better than PMU.
 - > The oscillation is damped when the series capacitor is bypassed. (4.5 sec)

9

 \rightarrow The oscillation resource is eliminated.

• With the deployment of WMUs, the architecture of next-level WAMS is anticipated to evolve as below.

• The Structure of WMUs and waveform data concentrators (WDCs)

WMU for High-Resolution Waveform Measurement

- > Main Function: Continuous Waveform Recording, Seamless Data Capture, Outage Ride Through
- Main Components: High-speed ADC (Analog-to-Digital Converter), Precise Time Synchronization, High-Speed Data Storage, High-Speed Communication

- Main Function: Real-Time Data Collection from WMUs, Time Synchronization and Preprocessing, Data Transmission via Communication Protocols
- > Mian Components: Data Acquisition Module, Communication Protocol, Time Synchronization Unit, etc.

- Standardization of General Requirements and Communication Data Fields for WMU/WDC and WAMS
 - The new standard presents general functional requirements in terms of measurement and communication for achieving an advanced monitoring system

- A high-resolution WAMS Based on WMU ٠
 - **Hybrid State Estimation-based** Online Situational Awareness and Playback

Online Situational Awareness

Domain Integration and Time Synchronization for Heterogeneous Data Integration

Event Playback

•••

signal

Time synchronization

Protection device setting evaluation

Alarm threshold evaluation Control system performance evaluation

Applications

WMU Data / HILS -based Offline Playback For Post-Event Analysis

Data storage

Waveform measurements

with time tagging

GPS

clock

Event analysis

Operator Training

••• Tn-1 Tn time

Т2

Post-event Analysis

Rearranging data according to the time series

> **Playback for** post-event analysis

2024.10.08, 12:34:21, ...

time

- WMU-based online wide-area situational awareness applications
 - Online High-Resolution Oscillation Awareness and Source Location

DEF-based Local and Wide-Area Oscillation Source Location Under Grid Partitioning and Hierarchical Monitoring System

The oscillation observable region of each WMU can be distinguished based on their respective locations When oscillation occurs,

energy is dissipated from the oscillation source

Using DEF, the direction of energy flow can be

calculated, and the area with the highest energy deviation is identified as the oscillation source

Positive (+) → Oscillation absorption

- WMU-based online wide-area situational awareness applications
 - Stability Monitoring Technology for Converter Infrastructure-Intensive Areas

WMU-based Situational Awareness Technology for Converter-Intensive Area Including HVDC and MTDC

- With the growing deployment of large-scale DC
 transmission systems, interaction between converters
 has become a key factor in oscillation stability issues
- Since large HVDC/MTDC systems are often adjacent to large-scale renewable energy plants, monitoring for oscillation instability is critical

➔ To ensure reliable operation, advanced situational awareness technology is needed through precise monitoring in DC infrastructure-Intensive Areas

• WMU-based online wide-area situational awareness applications

WMU Data-based Converter-Driven Stability Monitoring Technology

Online Power System Impedance Estimation and Converter-Driven Stability Assessment / Root Cause Analysis

- WMU-based online wide-area situational awareness applications
 - AI- /Big Data-Driven Advancement of Stability Monitoring Technology

Event Forecast and Wide-Area based AI-driven Online / Offline Stability Technology Advancement

- > The integration of AI with big data acquired from WMUs enables the advancement of WMU-based WAMS
- > (Monitoring Advancement) AI-based Data-driven WAMS advancement
- > (Stability Estimation) Event forecast using weather data and stability estimation

- The HILS validation of the devices and WAMS
 - HILS verification environment for WMU, WDC, and WAMS
 - Local and wide area stability monitoring system of Performance verification prior to field deployment

Conclusion

Challenges Facing Power Systems with High IBR Penetration

- With the increasing penetration of IBR, high-frequency oscillations have been observed
 - ➔ Resonance and Converter-driven stability
- PMU cannot capture such high-frequency oscillation due to their limited sampling rate
- WMU can capture it by sampling raw waveform data with high sampling rate
- Despite its advantages, the application of WMUs still faces technical challenges such as the large volumes of data and significant communication burdens

WMU-based Next-level WAMS

WMU-based WAMS requires continuous key technical and implementation challenges as follows:

① WMUs & Waveform Data Concentrators (WDC) for measuring and aggregating waveform data

③ Standardization of General Requirements for WMU/WDC and WAMS **② High-Resolution WAMS Featuring** Hybrid State Estimation and Playback

④ WMU-based Online Wide-Area Situational Awareness Applications

Thank you

