

Scalable Implementation and Deployment Of

RTLSE and **RTLSE**-based Contingency Analysis

for Transmission Systems Mohammadreza Maddipour Farrokhifard, Dulip Madurasinghe, Aravindhan Vadivel Vijay Sukhavasi, Saurabh Sahasrabuddhe

15th April, 2025

Outline

✓ Introduction

- ✓ Real-time State Estimator
 - ✓ Overall view
 - ✓ Scalability and Robustness
 - ✓ Results and displays
- ✓ RTLSE complementary tools
 - ✓ Contingency Analysis
 - ✓ Optimal PMU Placement
- \checkmark Conclusion

INTRODUCTION

3

Landscape Change- Need for Scalability and High-Performance Platforms

Need for Better

Agility

Visibility and Higher

Higher Renewables Penetration

- Need for higher resolution visibility and faster agility to monitor and manage the grid.
- ✓ Greater and regional variability in frequency (due to reduced/sparse inertia)
- ✓ Grid operating closer to its stability limits (frequency and voltage)

Accelerated Adoption of WAMS sensors

- ✓ Customer field installations growing from 100s → 1000s (e.g. ONS, Brazil 1000+; PowerGrid, India 2500+)
- Multifunctional IEDs (such as Relays & Fault Records) capable of providing WAMS data.

Source: Net Zero by 2050 - International Energy Agency

There is a need for application with:

- Higher Performance
- Scalability
- Flexibility and Agility
- Modularity and Extensibility
- Additive Solution

200 Sensors \rightarrow 2500+ Networked Capable Devices

REAL-TIME STATE ESTIMATOR

Real-time Linear State Estimator

Comply with NERC IRO-008-2 R4 and TOP-001-4 R13 as back-up to existing EMS State Estimation.

- Tertiary real-time assessment solution
 Leveraging WAMS -> Independent of data from EMS
 Solves at incoming WAMS data rate; built-in error
 processing to ensure solution robustness
- Extends WAMS observability beyond existing infrastructure
- Detect and correct for erroneous/missing WAMS data

Features	Linear State Estimator	Traditional State Estimator
100% Convergence	\checkmark	
Linear Solution	\checkmark	
Iterative Solution		\checkmark
Sub-second results	\checkmark	
Time synchronized measurements improving solution quality	\checkmark	
Alternative data source for CA and Dynamic Stability Assessment	\checkmark	
Official data source for CA and Dynamic Stability Assessment		~

- Approximately 30~40% PMU coverage needed to achieve observability
- LSE can be restricted to observability pockets or grid voltage levels for lower PMU coverage

© 2025 GE Vernova and/or its affiliates. All rights reserved.

 \checkmark

 \checkmark

 \checkmark

Utilizes phasor measurements from PMUs

State estimates obtained at sub-second intervals

Linear Problem, non-iterative solution

LSE Solution Workflow

🥵 GE VERNOVA

Input (static)

Decision Input (dynamic)

Analysis

Scalability and Robustness

Architecture

- Solution offered as a set of microservices
- Orchestration of services is handled by Kubernetes
- Horizontally scalable, individually upgradable
- Parallelization

Highlights

- Speed : Keeping up with real-time PMU streaming rate
- Robustness : Efficient and thorough error processing
- Backup to EMS classic State Estimator

Performance:

- Successfully validated sub-second performance with large-scale utility model.
- Deployed (and in process of deployment) for multiple customers
- Parallelization- Scale up LSE solvers to keep up with increasing PMU deployments
- Different Run-Time Optimizations

RTLSE Architecture

RT-LSE Results (major US ISO)

PMU Datasets

Three datasets were created based on provided PMU data -

- Set A: PMU Data As Is
- Set B: Cleaned data after removing 14 phasors with highest number of gaps
- Set C: Subset of data (timestamp based) with no data quality changes

Performance

Dataset	Set A	Set B	Set C	
No. of input phasors	396	382	396	
Total Time	783.335 (s)	520.460 (s)	297.115 (s)	
Avg. Time / Cycle	43.542 (ms)	28.930 (ms)	16.515 (ms)	
Avg. Cycles / Second	22.966	34.566	60.551	

Machine Specifications → Operating System: Windows 10 Pro, Processor: Intel[®] Xeon [®] E-2176M CPU @ 2.70 GHz 2.71 GHz, Installed Memory (RAM): 64.0 GB

© 2025 GE Vernova and/or its affiliates. All rights reserved.

Customers with RTLSE in their GridOS WAMS Portfolio:

LSE Displays

RTLSE COMPLEMENTARY TOOLS

RT-LSE Based Contingency Analysis

Key Challenges

- Limited PMU based observability Often, only high KV level network observable
- Leads to incomplete basecase for traditional full Contingency Analysis
- Heavy network equivalencing needed to run CA → negative impact on the quality of the solution

Solution

- Sensitivity based contingency analysis
- No need of network equivalencing
- Automatically adjusts to PMU-observable region of the network

Results Comparison for Contingent Line 34532

Local Network Connectivity

Observed Element (Line)		Post-Contingent MW Flow					
	Pre-Contingent MW Flows	RT-LSE + Sensitivity Based	Power Flow Result	Delta (%)			
34563	38.71	84.35	83.9	0.53			
T559	-324.94	-324.94	-319.7	1.61			
T538	-185.52	-185.52	-188.1	-1.39			
34522	-131.12	-84.91	-83.9	1.19			
34523	96.31	121.25	122.1	-0.70			
34519	-227.58	-206.31	-206.1	0.10			

RT-LSE Based Contingency Analysis

	8		Q Search or jump to C C Search or jump to			+ ~ ③					
	Home > Dashboards	> LODF Results					🛱 🌐 Add 🗸	Share 2) Last 15 minutes 🗸	ର୍ ଅ 5s × ^	
	~ LSE - LODF										
	LODF Results										
	timestamp ▽	contingency_equif $ abla$ monitored_equipment_id $ abla$	pre_mw ▽	lodf 🖓	post_mw 🖓	observable 🖓	violation_level ⊽	violation_ 🖓	last_topology_run 🖓	model_version ∇	
Results	2025-04-04 12:45:00	ddbe7d9b-89cf-4ce7· 81b10d9a-217f-4dc2-80b9-4f044a46a6	531	-0.0600	503	true	EMERGENCY_LOV	v 600	2025-04-04 08:45:11	. WamsCommonModel_	
	2025-04-04 13:21:00	81b10d9a-217f-4dc2-{	-450	-0.0903	-497	true	LOADSHED_LOW	300	2025-04-04 08:45:11	WamsCommonModel_	
	2025-04-04 13:21:00	81b10d9a-217f-4dc2-{ ddbe7d9b-89cf-4ce7-a855-59ae76712	452	-0.0903	405	true	UNKNOWN	0	2025-04-04 08:45:11	WamsCommonModel_	
	2025-04-04 13:21:00	81b10d9a-217f-4dc2-{ d1c9f5c5-4f06-4f2e-aef3-e852921727	-195	0.0449	-171	true	LOADSHED_LOW	500	2025-04-04 08:45:11	WamsCommonModel_	
	0005 04 04 40 04 00	044030- 0476 43-0 (3500404 0004 40EE 0040 00000640	405	0.0440			LOADOUED LOW	500	0005 04 04 00 45 M	·····	
	Contingency Elements										
	mrid 🖓	composite_id ⊽	name 🖓			type ▽					
Contingency	81b10d9a-217f-4dc2-80b9	9-4f044a46a615 NEPOOL.EAST.T559.1	1			A	AC_LINE_SEGMENT				
List	ddbe7d9b-89cf-4ce7-a85	55-59ae767122a2 NEPOOL.NORT.34532.1	1			A	AC_LINE_SEGMENT				
	Monitored Eleements										
	mrid 🖓	mrid ♡ composite_id ♡			name 🖓			type ⊽			
Observable	072bff3f-87f7-4924-9f0c	1			A	AC_LINE_SEGMENT					
	81b10d9a-217f-4dc2-80b	81b10d9a-217f-4dc2-80b9-4f044a46a615 NEPOOL.EAST.T559.1			1			AC LINE SEGMENT			
elements											

Optimal PMU Placement

- Aims to achieve complete power system network observability with minimum number of PMUs
- Considers existing PMU placement in the solution process (or prohibited buses)
- Considers additional conditions like required level of redundancy for a particular network equipment
- Inputs:
 - Network Model (CIM16/PSSE)
 - Existing PMU deployment mapping information
- Output:
 - Number and location of new PMUs for complete system observability

B PhasorAnalytics									-	61 X
Data ▼ Analysis ▼ Tools ▼ Help ▼										
Optimal PMU Placement										
- F	д	Result								
Network Buses 1₹ 7 Q 🛓	126	Bus Name	↑ KV Level 🏹	PMU Status	Must be Observable?	Weight	Needs Extra Redundancy	Observability Index	PMU Recommen	nded 7
ARIZONA1 110 I258		ARIZONA1 110 I258	110.00	Can Have PMU						
ARIZONA1 20 1252		ARIZONA1 20 1252	20.00	Can Have PMU						
ARIZONA1 20 1254		ARIZONA1 20 I254	20.00	Can Have PMU	2					
ARIZONA1 20 1256		ARIZONA1 20 1256	20.00	Can Have PMU	2					
ARIZONA1 345 Z261		ARIZONA1 345 Z261	345.00	Can Have PMU					2	
ARIZONA1 500 I260		ARIZONA1 500 I260	500.00	Can Have PMU	2				2 🛛	
ARIZONA1 500 Z257		ARIZONA1 500 Z257	500.00	Can Have PMU						
ARIZONA3 110 I281		ARIZONA3 110 I281	110.00	Can Have PMU						
ARIZONA3 110 1283		ARIZONA3 110 I283	110.00	Can Have PMU						
ARIZONA3 20 1277		ARIZONA3 20 1277	20.00	Can Have PMU						
ARIZONA3 20 1279		ARIZONA3 20 1279	20.00	Can Have PMU						
ARIZONA3 345 Z288		Statistics								
ARIZONA3 500 1285		Statistic					Curr	ent Schema	Proposed Scher	ma
ARIZONA3 500 1287		Total number of buses with P	MU							39
ARIZONA3 500 Z280		Total number of new recomm	ended PMUs							39
		Percentage of buses with PM	Js						30,	.95
✓ Constraints		Total number of observable b	uses						1	126
Maximum PMUs1		Percentage of observable bus	es						1	100
KV Level		Average Observability Index							1.	.40
Consider Zero Injection Buses		Δverage Ohsenvahility Index f	or observable buse	¢						<u>م</u>
Start Analysis									Ex Ex	port Result
Mode Idle	Sta	tus OPP analysis completed w	vith optimal solution	n				()	Server Status 🛛 🖨 O	offline

Conclusion

- The increasing number of deployed PMUs highlights the need for scalable and high-performance applications in modern power systems.
- RTLSE can serve as a backup to the traditional EMS state estimator, offering enhanced visibility and reliability.
- A scalable and high-performance implementation of RTLSE can be achieved through a Kubernetes-based microservices architecture, enabling flexibility and efficient resource utilization.
- RTLSE has been tested and is either deployed or in the process of being deployed by various utilities and ISOs.
- Complementary tools such as contingency analysis and optimal PMU placement further enhance the value and effectiveness of RTLSE.

THANK