Power System Oscillations Natural and Forced

Jan. 2025 NASPI EATT presentation Dan Trudnowski

G. Rogers, R. Elliott, D. Trudnowski, F. Wilches-Bernal, D. Osipov, and J. Chow, <u>Power System Oscillations</u>, 2nd Ed., Springer 2025.

Power Electronics and Power Systems

Graham Rogers - Ryan T. Elliott -Daniel J. Trudnowski -Felipe Wilches-Bernal - Denis Osipov -Joe H. Chow

Power System Oscillations

An Introduction to Oscillation Analysis and Control

Second Edition

Dynamic Response Types

Natural Modes Electromechanical Dynamics

The Physics

Electrical

Modes

Frequency, Damping, Shape

Mode	Frequency (Hz)	Damping (%)
1	0.51	7.80
2	1.19	3.40
3	1.22	3.30

	Angle($u_{i,k}$)	Amplitude	
Gen	(degrees)	$u_{i,k}$	
3	-180	1.00	
4	-180	0.84	
1	0	0.42	
2	0	0.31	

Mode Shape

Damping

Forced Oscillation

Dynamic Response Types

Forced Oscillations

- Response of system to an apparatus in a limit cycle
 - e.g. generator controller
- NOT A TRADITIONAL SYSTEM INSTABILITY
- Can cause significant issues.
- Often contain multiple non-stationary frequencies.
- Some oscillations are difficult to categorize as a pure FO.
- Very common
 - WI = 16 events in 2008/9 operating season in WECC.
 - WI: 2005 [1], 2015 [2]
 - EI: 2016 [2], 2019 [3]
- Can be very severe if near a natural mode (resonance):
 - WI: 2005 [1].
- Inverter Based Resources (IBRs) can be significant
 - Often control based
 - Often higher frequency (well above 1 Hz)
- Real-power FOs tend to "propagate" more than reactive-power FOs.

[1] S. Sarmadi, et. al. "Analysis of November 29, 2005 western American oscillation event," *IEEE Trans Power Syst.*, vol. 31, no. 1, pp. 5210-5211, 2016.

[2] NERC, "Interconnection oscillation analysis," Tech. report, NERC, 2019.

[3] NERC, "Eastern interconnection oscillation disturbance," Tech. report, NERC, 2019.

FOs often contain harmonics

Resonance – the FO is near a natural mode

Resonance – the FO shape follows the mode's shape

- At non-resonance, the largest observed oscillation amplitude is often indicative of its location.
- At resonance, the FOs shape follows the mode's shape [1].
- This makes locating an resonance FO source very difficult!

Gen #	0.37-Hz Mode Shape		0.37-Hz FO shape for source at Gen 34	
	Mag	Angle (deg)	Mag	Angle (deg)
2	1.07	4	1.07	4
7	1	0	1	0
14	1.01	-12	1	-12
15	0.73	0	0.73	0
23	0.61	-164	0.62	-164
29	0.22	-141	0.22	-141
33	0.18	-31	0.18	-32
34	0.95	139	0.94	138

Online Oscillation Monitoring

On-Line Oscillation Monitoring Goals

- Detect any sustained oscillations
 - General frequency band
 - Amplitude and locations of oscillations
 - Solved problem
- Is it a FO or an un-damped natural transient?
 - Research area
- Identify FO source
 - Max oscillation amplitude usually points to source
 - Resonance requires more sophisticated methods energy flow (research area)
- Detect any low-damped natural modes
 - Termed a Mode Meter (MM)
 - FO biases a MM. Research area.
- Control Actions
 - Forced oscillations
 - remove the driving source
 - Low damped modes
 - Solutions require significant studies (e.g., reduced loading on key corridors, PSS unit adjustment, etc.)

Detecting Oscillations

Automated Detection Approaches

- Spectral (FFT) based
 - Quantifies FO amplitude at each location
 - Easy to implement
 - Struggles with stationarity
 - Too detailed for online operator applications
- Wide-band RMS energy detection
 - Quantifies FO amplitude at each location
 - Easy to implement
 - Compatible with operator goals (not too granule)
 - Has been (and is being) implemented in many control centers

Oscillation Detection (OD) Analytic

RMS Energy Filter

WECC FO

WECC FO

Closing Thoughts

- Power systems are
 - Naturally elastic and under damped
 - Have many natural modes of oscillation
 - A few of these modes are dominant
- Forced Oscillations
 - Very common
 - Are NOT an instability
 - Can cause significant issues
 - Resonance can cause FO to be wide spread
- Oscillation monitoring
 - Detection is a mature science
 - Distinguishing FOs and natural modes is a research area
 - Locating resonant FOs is a research area