

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

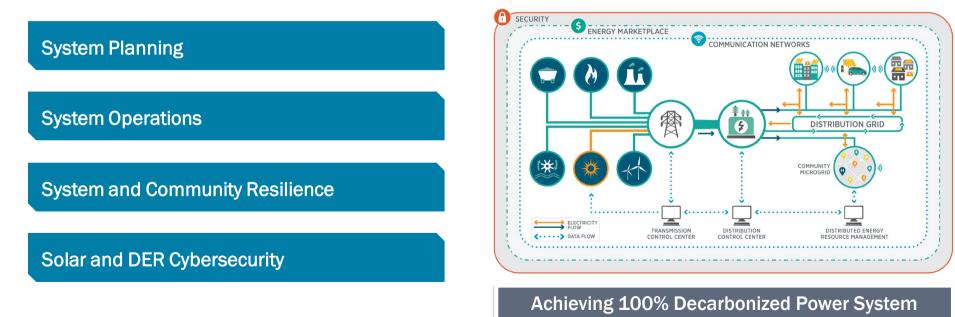
Operation and Planning Tools for Inverter-Based Resource Management and Availability for Future Power Systems (OPTIMA)

Marissa E. Morales-Rodriguez, Ph.D. Technology Manager, Solar Energy Technologies Office U.S. DOE-Energy Efficiency and Renewable Energy October/2024

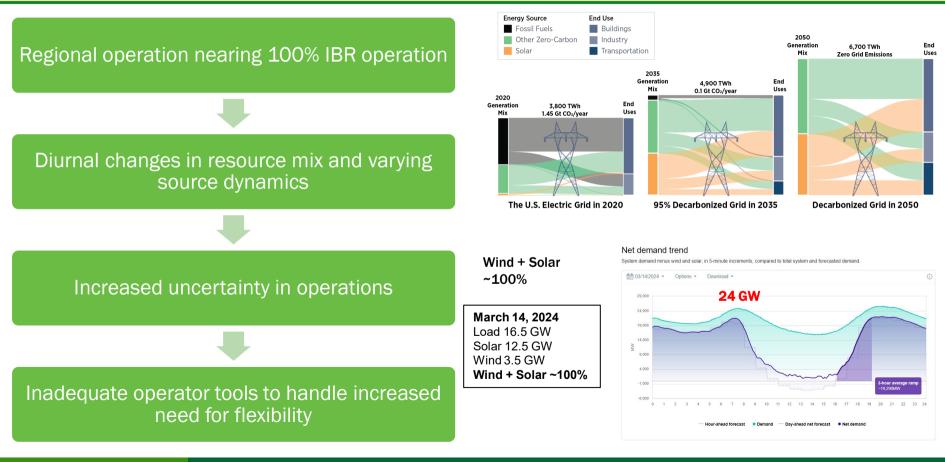
Solar Energy Technologies Office (SETO) Overview

MISSION

We accelerate the **advancement** and **deployment of solar technology** in support of an **equitable** transition to a **decarbonized economy no later than 2050**, starting with a decarbonized power sector by 2035.


WHAT WE DO

Drive innovation in technology and soft cost reduction to make solar **affordable** and **accessible** for all Americans Enable solar to support the **reliability**, **resilience**, and **security** of the grid


Support job growth, manufacturing, and the circular economy in a wide range of applications

SETO Systems Integration Program

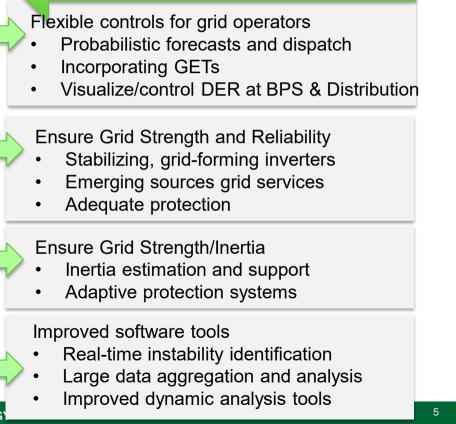
The Systems Integration (SI) subprogram supports early-stage research, development, and demonstration (RD&D) of technologies and solutions – focusing on technical pillars **data**, **analytics, control, and hardware** - that advance the **reliable, resilient, secure and affordable** integration of solar energy onto the U.S. electric grid.

Changing Energy Landscape

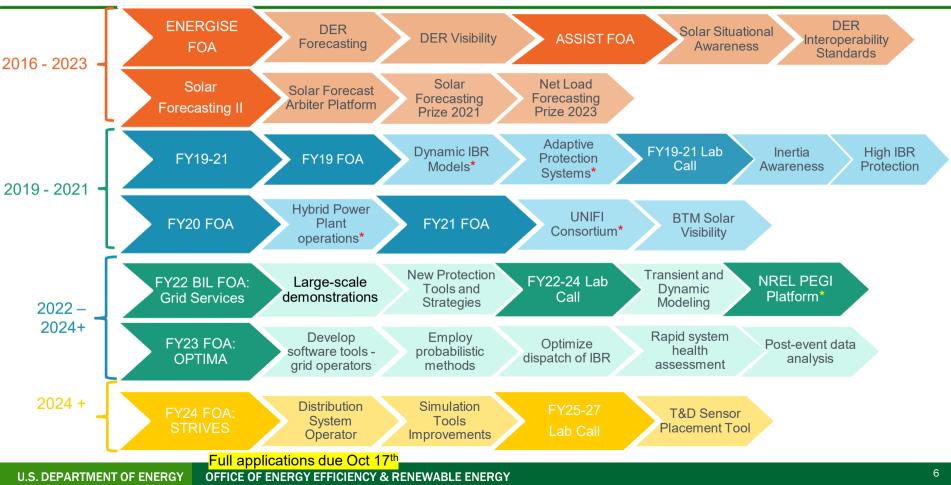
Opportunities to Address IBR Challenges

CHALLENGES

High variable renewable generation and low situational awareness


Operating near 100% IBR Sources

Varying Dynamics of Resource Mix

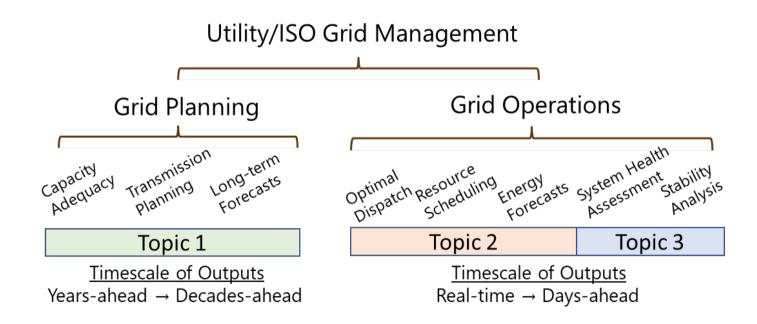

Faster Dynamics & Complexity from IBR

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERG

OPPORTUNITIES

SETO: Grid Operations Efforts

OPTIMA



SOLAR Funding Program

U.S. DEPARTMENT OF ENERGY Office of ENERGY EFFICIENCY & RENEWABLE ENERGY SOLAR ENERGY TECHNOLOGIES OFFICE

Operation and Planning Tools for IBR Management and Assurance in Future Power (OPTIMA)

Grid Planning vs Operations

- Planning and operations studies will often use the same tools
- No need to silo expertise in one category

Topic 1. Planning Tools for Future Power Systems

- New tools and methods to incorporate VRE, IBRs, and DERs.
- Improve BPS long term planning
- Impacts of cascading disturbances.
- Accurate modeling and estimation of aggregated DERs in system net loads

Topic 2. Variability Management in Grid Operations

- New tools for grid operators to optimally utilize and control large-scale transmission connected VREs and large numbers of DERs
- BPS dispatch or resources and services.
- Solutions at the distribution or aggregator level to improve real time dispatchability and utilization of VREs.

Topic 3. Rapid System Health and Risk Assessment Tools for Grid Operators

- New tools for grid operators, data and communications systems that support them to identify and mitigate emerging system risks driven by faster dynamics and uncertain control interactions or IBRs.
- Data ingestion from multiple data sources.
- Labeled data sets for quick analysis improving situational awareness.
- Visualization tools to accurately estimate system state.

Awards

Торіс	Awardee	Project Title
1	Florida International University	Advanced Methods for Integrating Renewables in Grid Planning (ADMIRE-GridPlan)
	Washington State University	Planning Tools for Managing Uncertainties in Future Power Grids
2	Georgia Institute of Technology	ENVELOPE: Energy Variability and Electricity Optimization Using Stochastic Operational Envelopes
	Iowa State University	Modernizing Operation and Decision-Making Tools Enabling Resource Management in Stochastic Environment (MODERNISE)
	Midcontinent Independent System Operator (MISO)	Operations Risk Platform for Risk Assessment and Control Room Operations
	National Renewable Energy Laboratory	Coordinated Operation for Renewable Energy Dominant Transmission Grids (CORRECT)
	National Renewable Energy Laboratory	Digital Twin Addressing Multi-Scale Operational Needs of IBR-rich Grids (DIAMOND)
3	Arizona State University	DASH-IBR: Dynamic Assessment of System Health for IBR-dominant Power Systems
	Oak Ridge National Laboratory	Enhanced Observability of Power Grids
	Pacific Northwest National Laboratory	Wave Apps: Distributed Waveform Analysis Platform for Grid Operation Applications
	Quanta Technology	Grid Operator Analytics and Assessment Tools for IBRs Dominated Grid (GOAAT-IBR)
	University of South Florida	SPRING: Stability Predication for IBR-Penetrated Grids Enabled by Digital Twins

Summary

- Research efforts are targeting challenges related to planning, operations and reliability of power systems with high penetration of inverter-based resources and distributed energy resources.
- New tools, techniques and long-term demonstrations are needed to fully utilize the potential of solar and solar + systems to support grid reliability.
- The clean energy transition is introducing new techniques and tools, in addition to new stakeholders who will play a role in grid operations and services ensuring systems reliability, resilience and security.

Thank you! marissa.morales-rodriguez@ee.doe.gov

SIGN UP NOW: energy.gov/solar-newsletter

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY