

Office of ELECTRICITY

US DOE Office of Electricity

Overview of FOA 3127

October 2024

Sandra Jenkins Director of Grid Controls

The Office of Electricity

Reliability

Resilience

Affordability

Security

ce

Grid Controls and Communications Division

• The Division is responsible for driving and catalyzing innovations related to data acquisition and communications, modeling and analytics, and operational and planning "software" tools for both transmission and distribution

Grid Controls Team

- Mission: Develop tools to enhance grid operator visibility and control to ensure effective and efficient utilization of new technologies, systems, and resources connected to the grid.
- OE Grid Controls RDD&D efforts include:
 - Power system situational awareness and measurements
 - Grid edge integration and interoperability standards
 - Electric Sector Data Strategy development
 - Development of controls for integration of new resources and technologies
 - Risk science, decision science, and human factors

The Evolving Role of Grid Data (Operational Perspective)

U.S. DEPARTMENT OF

Office of ELECTRICITY

			মেট্রেন্টা
Data type	PAST	PRESENT	FUTURE
Source	Limited: Mainly	More diverse: Includes meter	Highly varied: Real-time
	voltage, current,	data, outage information,	sensor data, forecasts,
	power flow	weather data	environmental data
Granularity	Primarily: utility assets - power plants and substations	Expands to include smart meters and more distribution assets distributed energy resources (DERs)	Diverse: includes non-utility, DE connected devices, vehicle- to-grid (V2G), loT sensors
Focus	Low: Data collected at	Moderate: Meters	High: Real-time data
	infrequent intervals	collect data every	streams with
	(hourly, daily)	few minutes	millisecond resolution
	Monitoring grid health	Optimizing grid	Advanced analytics for predicti
	and coordinate	operations, improving	maintenance, dynamic pricing
	response to issues	efficiency	and integrating renewables

ive

5

FOA 3127: Data Analytics Demonstrations

FOA Objectives: support **sensor data analytics** demonstrations for system monitoring and control:

- Demonstration of applications utilizing existing AMI data
- Demonstration utilizing high fidelity synchronized measurement for grid stability monitoring and control

U.S. DEPARTMENT OF

Office of ELECTRICITY

 Demonstration of applications utilizing mixes of different sensors for improving grid resilience, security, and safety leveraging commercial off-the-shelf sensors

Goals: advance the state of the art in utility data analytics

- Tools need to incorporate best practices for human factors, decision science, and cognitive science as much as physics and mathematical methods to be effective.
- Demonstrations that involve direct partnerships with data providers and power sector utilities ensures that the sensor data is useful for the humans that operate, maintain and plan the power system.

Prime Applicant	Project Title
Arizona State University	Data-Driven Reliable and Transmission and Distribu
Guam Power Authority	Sensor Data Analytics Der
Iowa State University	Data-Driven Automated ar to Enhance Reliability and Grids
North Dakota State University	Development and Demons Data Analytics Tool for Grid
New York University	Reliability-Enabled Second on Synergistic Sensor Dat
UC-Riverside	Enhance Data Quality, Eve Awareness with Machine I Using Synchrophasor and
University of Kentucky	Sensor Data Enabled Utilit Maximization, Load Model and Location
Vermont Transco LLC	Model-based Adaptive Pla Dynamic Operating Envelo

Resilient Operation of Active ition Systems

monstration

nd Proactive Asset Management I Resilience of Rural Distribution

stration of Graph-Based Sensor id Stability Monitoring and Control

dary Distribution Visibility Based ta Analytics

ent Detection, and Situational Learning Algorithms AMI Data

ty Asset Capacity Utilization ling, and Event Detection

atform Environment for Real-Time opes and Operator Trust (MAPLE

Project Team Location

Office of ELECTRICITY

U.S. DEPARTMENT OF

Energy Department Invests \$7.5M to Enhance Grid Reliability and Resilience through Data Analytics | Department of Energy

Managing stability grid issues from IBRs

Cloud-based realtime monitoring

Health monitoring of distribution transformers

Data cleaning, event detection, classification

Distribution capacity utilization

DER load modeling

Dynamic operating envelopes

Harnessing Contemporary Risk Science to Ground Grid Reliability and Resilience Efforts

U.S. DEPARTMENT OF

Office of ELECTRICITY

Office of ELECTRICITY

U.S. DEPARTMENT OF

✓ What can go wrong?

✓ What are the consequences? Over what time frame?

✓ What is the *likelihood*?

Risk Description=(Hazard Scenarios, Consequences, Uncertainties)

NOI: Human-Centric Analytics for Resilient & Modernized Power sYstems (HARMONY)

Notice of Intent issued on September 17, 2024: FedConnect: Opportunity Summary Expected Notice of Funding Opportunity (NOFO) Issue Date: end of CY 2024

Anticipated Objectives:

ELECTRICITY

U.S. DEPARTMENT OF

- Advance the state of the art for power system uncertainty and risk metrics
- Help human operators receive actionable information to better understand, predict, prevent, and mitigate cascading failures in power grids

Anticipated Awards:

- Due to earlier stage R&D focus: Higher education and research institutions preferred leads
- Partnerships with utilities and technology providers are highly encouraged
- \$5M Total DOE Share
- Up to four (4) awards in FY 2025
- Three-year period of performance for R&D activities

OE announcement linked here: Two New Grid Modernization Funding Opportunities

Thank you

