NERC SMWG Outline for Role-Based Synchrophasor Training (RBST)

1. Introduction to Synchrophasor Technology

- Overview of Synchrophasors
 - Definition and basic principles
 - Historical development and evolution

Importance in Modern Power Systems

- Benefits and applications
- Case studies and success stories

2. General Training for All Departments

- Basic Concepts
 - Phasor Measurement Units (PMUs)
 - Data acquisition and synchronization
- System Integration
 - Communication networks
 - Data management and storage
- Regulatory and Compliance Requirements
 - Standards and protocols (e.g., IEEE C37.118)
 - Compliance with NERC and other regulatory bodies

3. Department-Specific Training Modules

- A. Transmission Planning
 - Synchrophasor Applications in Planning
 - Grid stability analysis
 - Load forecasting and capacity planning
 - Case Studies
 - o Real-world examples of synchrophasor use in planning

B. Transmission Operations

- Tailored Advanced Fundamental Concepts
 - Synchrophasor Theory
 - Distribution Devices
 - Data Quality
- Real-Time Monitoring and Control
 - Situational awareness
 - Voltage stability and oscillation detection
- Event Analysis
 - Post-event analysis and reporting
 - Tools and software for operational use

C. Protection and Control

- Tailored Advanced Fundamental Concepts
- Enhanced Protection Schemes
 - Wide-area protection
 - Adaptive relaying
- Fault Detection and Isolation
 - Faster and more accurate fault location
 - Coordination with traditional protection systems

D. Distribution Operations

- Tailored Advanced Fundamental Concepts
 - Synchrophasor Theory
 - Distribution Devices
 - Data Quality
- Distribution System Monitoring
 - Integration of PMUs in distribution networks
 - Voltage and frequency monitoring
- Outage Management
 - Improved fault detection and restoration
 - Coordination with AMI (Advanced Metering Infrastructure)

E. Information Technology (Data Management)

- Tailored Advanced Fundamental Concepts (Deep Dive)
 - Networking
 - Data Concentration
 - Protocols (C37.118, IEEE 2664-2024 (STTP)
 - Data Quality
 - PMU Devices
- Data Handling and Storage
 - Big data challenges and solutions
 - Data security and privacy
- Integration with IT Systems
 - SCADA and EMS integration
 - Data analytics and visualization tools

F. Research and Development

- Advanced Fundamental Concepts (Deep Dive)
 - Synchrophasor Theory
 - Networking
 - Data Concentration (Software)
 - Protocols (C37.118, IEEE 2664-2024 (STTP)
 - Data Quality
 - Hardware Devices
- Innovative Applications
 - New algorithms and methodologies
 - Pilot projects and experimental setups
- Collaboration with Academia and Industry
 - o Joint research initiatives
 - Funding opportunities and grants

G. Compliance

Regulatory Framework

- Understanding compliance requirements
- Regular audits and reporting
- Best Practices
 - Ensuring continuous compliance
 - Training and certification programs

H. Executive Leadership

- Strategic Importance of Synchrophasors
 - Long-term benefits and ROI
 - Integration into corporate strategy
- Decision-Making and Policy
 - Policy development and implementation
 - Risk management and mitigation

I. Maintenance and Field Services

- Advanced Fundamental Concepts (Deep Dive)
 - Synchrophasor Theory
 - Hardware devices
 - Commissioning/Configuration/Testing
 - Data Quality
- Installation and Maintenance of PMUs
 - Best practices for installation
 - Routine maintenance and troubleshooting
- Field Data Collection
 - Techniques for accurate data collection
 - Safety protocols and procedures

J. Customer Service and Support

- Understanding Synchrophasor Data
 - o Basic interpretation of data for customer inquiries
 - Communicating benefits to customers
- Support and Troubleshooting
 - Common issues and solutions
 - Escalation procedures

4. Practical Workshops and Hands-On Training

- Simulation Exercises
 - Real-time scenarios and problem-solving
- Field Training
 - Installation and maintenance of PMUs
 - On-site troubleshooting

5. Assessment and Certification

- Training Format
 - \circ Instructor-led
 - Online courses
- Knowledge Checks
 - Quizzes and tests for each module
- Certification
 - Role-based certification upon completion
 - Continuous education and re-certification

6. Continuous Improvement and Feedback

- Feedback Mechanism
 - Regular feedback from participants
 - o Iterative improvement of training content
- Updates and Refresher Courses
 - Keeping up with technological advancements | Periodic refresher courses