LINEAR STATE ESTIMATION AT TVA FOR RELIABILITY AND RESILIENCY

Presentation for NASPI Workgroup Meeting, Salt Lake City

> Neeraj Nayak (EPG) Jonathan Sides (TVA)

April 16, 2024

OUTLINE

- LSE Introduction
- TVA LSE Deployment
 - Overview
 - Data Flow
 - **Example Results**
 - Visualization
- Summary and Looking Forward

1

WHY GRID OPERATORS ARE USING LINEAR STATE ESTIMATION

Why LSE Technology?

Limitations of Legacy SE	LSE Solution
State Estimator Not Solving	LSE Always Solves
Iterative and Slow (every few minutes)	Linear Solution, Solves at sampling rate (30 or 60 frames/sec)
Grid Dynamics Not Observable	Advanced Applications for Oscillations, Damping, Phase Angle Differences, Sensitivities
Data Quality	Real-time data conditioning
Costly PMU Deployment	Expands Real-Time Observability beyond current PMU coverage
EMS Degradation or Failures	Provides backup to EMS resulting from equipment failure, physical and cyber attacks

Platform for advanced applications

WHAT IS LINEAR STATE ESTIMATION (LSE)

- Traditional SE use iterative methods which take time and don't always solve
- LSE is based on linear equations utilize models to provide estimated values
- Always solve at PMU reporting rate
- Data quality issues addressed by using model based estimated values
- Linear computations calculate estimated values for adjacent buses even

without PMUs at those buses

Essential platform for Smart Grid Applications

Result

Source: Shaun Murphy, Linear State Estimation, PJM, May 2020

3

How LSE Works

- Uses measured voltage & current phasors at one end of equipment/TL to estimate voltage phasors at the other end, based on the physical relationship of equipment's π -equivalent model
- single pass without iteration, requiring only voltage and current phasors from PMUs
- leverages measurement redundancy to provide a weighted average calculation

 $\therefore [X] = [(H^T W H)^{-1} H^T W][Z]$

Z: measurement vector
X: estimation state vector
I: voltage incidence matrix
Y: admittance matrix
σ: vector of the errors in measurements
W: covariance matrix of measurements errors

TVA eLSE DEPLOYMENT

TVA PMU Locations in PDC 11-31-2023

916 PMUs located across 116 sites including:

- DFR
- GE N60
- GE D90
- SEL311C
- SEL411L
- SEL787
- SEL735

TVA LSE DEPLOYMENT - OVERVIEW

LSE implemented for 500 KV TVA Transmission System

Inputs

- PMU Data in C37.118 format at 30 frames/second
- CIM Model
- One Line diagrams
- Breaker Status Information through PMU digital Signals
- LSE solution rate 30 frames/second
- Statistics
 - Total number of directly Observed Substations at 500 KV = 28
 - □ Total number of extended observable substations at 500 KV = 18
 - Total Observable footprint at 500 kV = 46 substations
 - Observability increased by 64%
 - Residuals on Voltage Estimates < 2%</p>

Data Flow

9

Linear State Estimation captures System Dynamics and Trends

eLSE Results – Example 1

Wrong voltages were selected for the lines when the DFR was initially set up

eLSE results provide accurate estimates in spite of measurement errors

*e*LSE Results – Example 2

						Estima	Estimated Values are correct				
Time Alignment Status Validation Performance LSE Monitor LSE Reports					SE Reports	Incorrect Measurements Large Residuals				uses	
Fri Dec 8 08:35:11 2023											
			••	Phasor Ty	/pe	Raw Phasor	Estimated Phasor	Magnitude	e Residual (%)	Angle Residual	
	1	TVA_G_	IT_1	1 Current		304051.34 A / 134.31 °	207.41 A / -49.76 °	1 46493.639	% (-303843.93 A)	175.92 °	
	2	TVA_G_	_11	Current		303798.81 A / 134.31 °	1052.61 A / -103.83 °	28761.42%	(-302746.20 A)	121.86 °	
	3	TVA_G_	(_11)	Current	X	303817.59 A / 134.25 °	1256.50 A / -107.74 °	24079.62%	(-302561.09 A)	118.02 °	
	4	TVA_T_	1_111	Current		514.41 A / -126.14 °	46.59 A / -53.43 °	1004.10%	(-467.82 A)	72.71 °	
	5	TVA_G_	_111	Current		1660.60 A / 48.28 °	553.84 A / 57.54 °	= 199.83% (·	-1106.76 A)	9.26 °	
	-	T) /A T	171		<u>ر</u>	100.07.4 / 00.07.0	100 00 1 1 70 1C 0	- 41 0001 (01		- 250.0	

Voltage and Current inputs were swapped resulting in incorrect measurements (line to neutral voltage fed as the input instead of current)

eLSE can provides accurate estimates even when measurement has extremely large errors

eLSE Results – Example 3

- PMU Measurements Indicate large difference in currents on both ends of a line
- LSE provides consistent current estimates

RESULTS VISUALIZATION ON ONE-LINE DIAGRAMS

500 kV System Overview

Substation One Line Diagram

SUMMARY AND LOOKING FORWARD

- LSE provides significant benefits for wide area monitoring and real-time operations
 - □ Improves PMU Data Quality
 - □ Identify Measurement or Model Errors
 - Extends PMU Observability
 - □ Improves Grid Reliability and Resiliency by providing independent solution for state estimation
 - Provides foundation/platform for advanced applications e.g. RTCA, Power Flow Solutions for Real-Time Assessments

Looking forward for TVA

- □ Apply LSE to 161 kV system
- □ Use LSE and PMU Measurements as backup to SCADA
- Consider/Evaluate Synchrophasor-based RTCA

Q&A, DISCUSSION

Thank you!

nayak@electricpowergroup.com

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

