

PRESENTATION FOR

NASPI WEBINAR SERIES

NEERAJ NAYAK

January 24, 2024

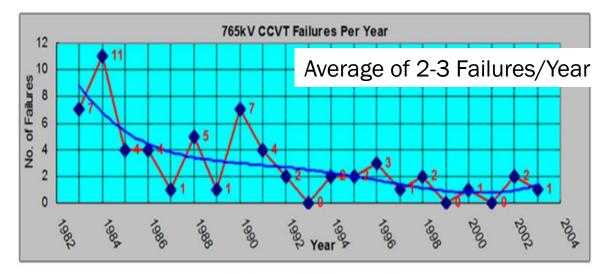
OUTLINE

- EPG Introduction
- Asset Health Monitoring Solution
 - Background and Need
 - Platform Features and Capabilities
 - Failure Types and Examples
 - Integration with WAMS Platform
- Summary and Looking Forward

EPG - INTRODUCTION

- Leading Provider of Synchrophasor Technology Solutions since 2000
- Comprehensive platform for real-time monitoring and grid analytics
 - WAMS
 - Oscillations
 - IBR Monitoring
 - LSE
 - Model Validation
 - WAMPAC
 - Real-Time and Offline Analytics
 - Advanced Applications
- Solutions in use at several grid operators, reliability coordinators and utilities in US and internationally

ASSET HEALTH MONITORING


- Utilities have invested billions of dollars in transmission equipment and substations
- Key substation assets include transformers, circuit breakers, instrument transformers (CTs, PTs, CCVTs) and Intelligent Electronic Device (Relays, PMU, DFRs)
- Proper functioning of substation assets is critical for power system operations, reliability and personnel safety
- T&D incidents are increasing:
 - Infrastructure is aging increasing vulnerability to equipment outages
 - Resource mix shifting to IBRs more oscillation incidents
- Equipment Failures can cause increases in costs, outages and risk to personnel safety and system reliability
- Identifying precursors to equipment failure can help prevent failure and minimize the impact on the system
- PMUs can be used to detect precursors to equipment failureand complement existing asset health monitoring methods

TRANSMISSION EQUIPMENT FAILURE - COSTLY

EQUIPMENT DAMAGE, OUTAGE, PERSONNEL SAFETY

Example from AEP of failing CCVT in a substation

AEP 765kV CCVT Failure Rate

~ 60 Reported Failures between 1982-2004

Source: T. Yang, Applying Substation Linear State Estimator to Instrument Transformer Health Monitoring and Management: Roadmap, CIGRE 2016.

Reference: Joshua C, DE-0E0000850 Final Report, "Substation Secondary Asset Health Monitoring and Management System (SSHM)", June 2020, Link

EHV INSTRUMENT TRANSFORMER FAILURES – TRANSMISSION COMPANY IN USA

Number of Failures in last 10 years

- CCVT Over 50
- PT 20 to 50
- CT 6 to 20

Cost of a Single Failure Event

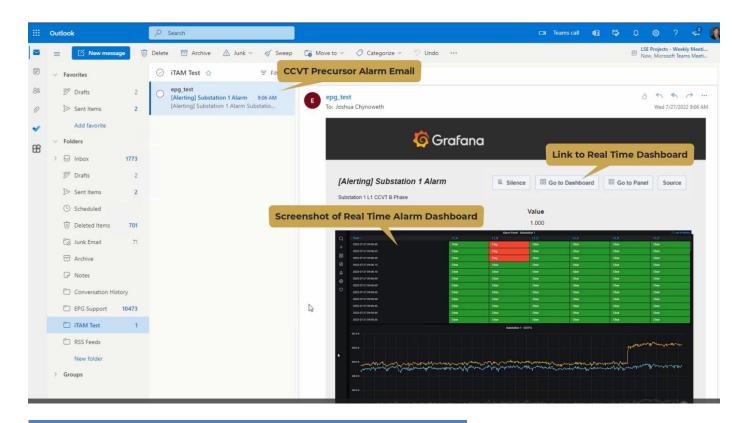
\$50,000 - \$250,000

Impact	Number of Events			
Misoperation of Protection Relays	2 to 5			
Outage	6 to 10			
Equipment Damage	6 to 10			
No Significant Impact	10 to 50			

Impact of Failures

Time Required for Repairs

More than a week: could be more than a month if replacement equipment is not available


EPG'S ASSET MONITORING SOLUTION - OVERVIEW

- Platform: Detect precursors to Equipment Failure from Instrument Transformers (CT, PT, CCVT)
- Data: PMU C37.118 Stream
- Methodology
 - Real Time Advanced Analytics
 - Ability to filter out system events and bad data
- Deployment: Central Location or in substations
- Visualization: One Line Diagrams, Dashboards
- Automated Real-time Alarm and Email Notifications

- Field Tested
 - Validated for 138kV, 500kV and 765kV substations
- Demonstrated at AEP
- Pilot Deployment at New York Power Authority (NYPA)

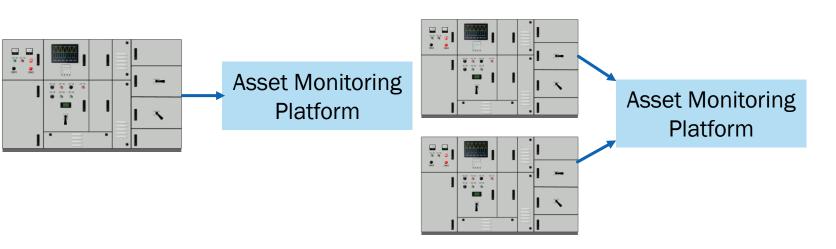
REPORTING AND ALARMING – EMAIL NOTIFICATIONS

CENTRAL NORTH EAST ŤŤŤ B1 MV CBB1EAS

Identify faulty equipment on substation one-line diagrams

Email Provides Information on

- Substation effected
- Equipment (CT, PT, CCVT) alarming
- Faulty Phase
- Metric violated (Voltage or Current)

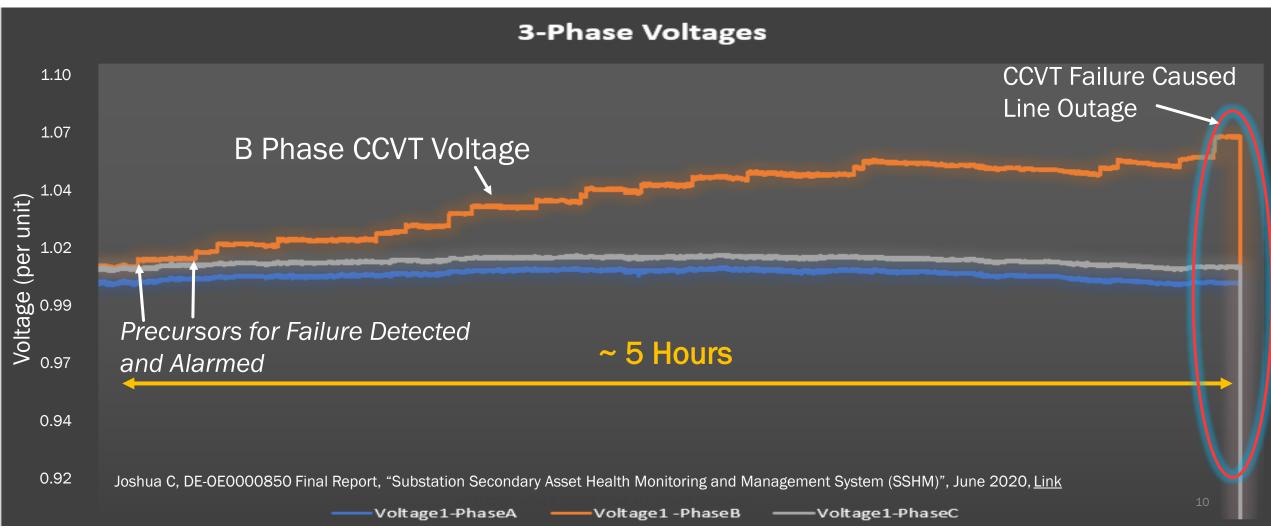

DEPLOYMENT OPTIONS

Standalone Asset Monitoring Platform

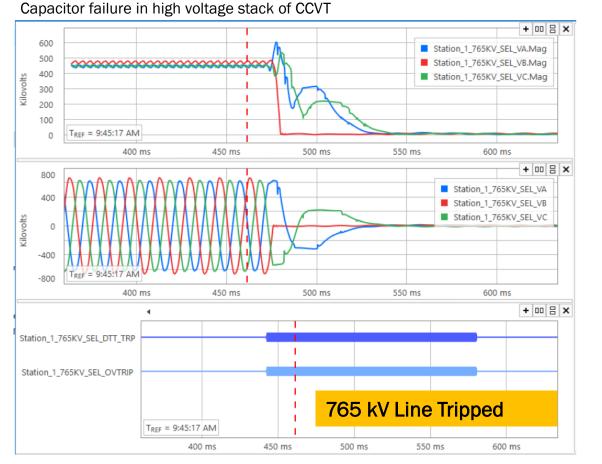
Substation Level

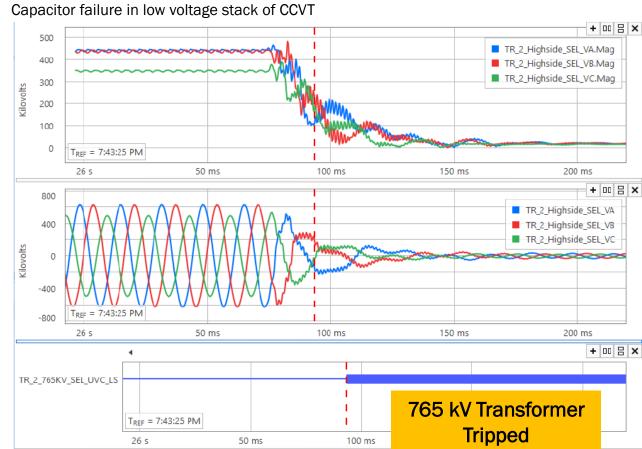
Standalone Asset Monitoring Platform – System Level

Integrated with WAMS


Deployed in Substation on a hardened PC

Deployed at a central location monitoring data from multiple substations


Deployed in a control center integrated with WAMS and other data analytics


AEP CCVT FAILURE EVENT - EXAMPLE

- CCVT Failure Event B Phase Voltage has anomalies/precursors before equipment failed
- Can be detected 5 hours prior to failure, System is tuned to capture these failures and provide early warning

AEP EXAMPLES – CCVT FAILURE CAUSED 765KV LINE TRIP AND TRANSFORMER TRIP

Precursors Observed ~ 5 Days Ahead

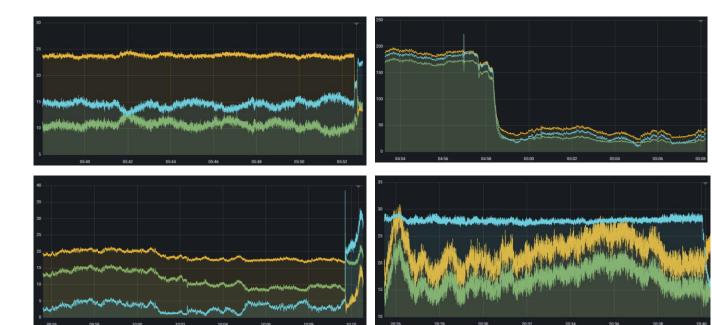
Source: Qiushi Wang et. al, 'CCVT Modelling Failure Mode Investigation and Impact on Relay Operation', CIGRE-US, 2020.

Precursors Observed ~ 5 Hours Ahead

TYPES OF FAILURES IN CCVT'S THAT CAN BE DETECTED

CCVT Failure type	Detected with physical inspection?	Detected by EPG Solution
Loose fuse connections in CCVT safety switch	\checkmark	\checkmark
Capacitor failure in high voltage stack of CCVT	×	\checkmark
Capacitor failure in low voltage grounding stack	×	\checkmark
Failure in voltage transformer and series reactor in CCVT	×	\checkmark
Filter circuit failure and spark gaps	×	\checkmark
Ferroresonance suppression circuit failure	×	\checkmark

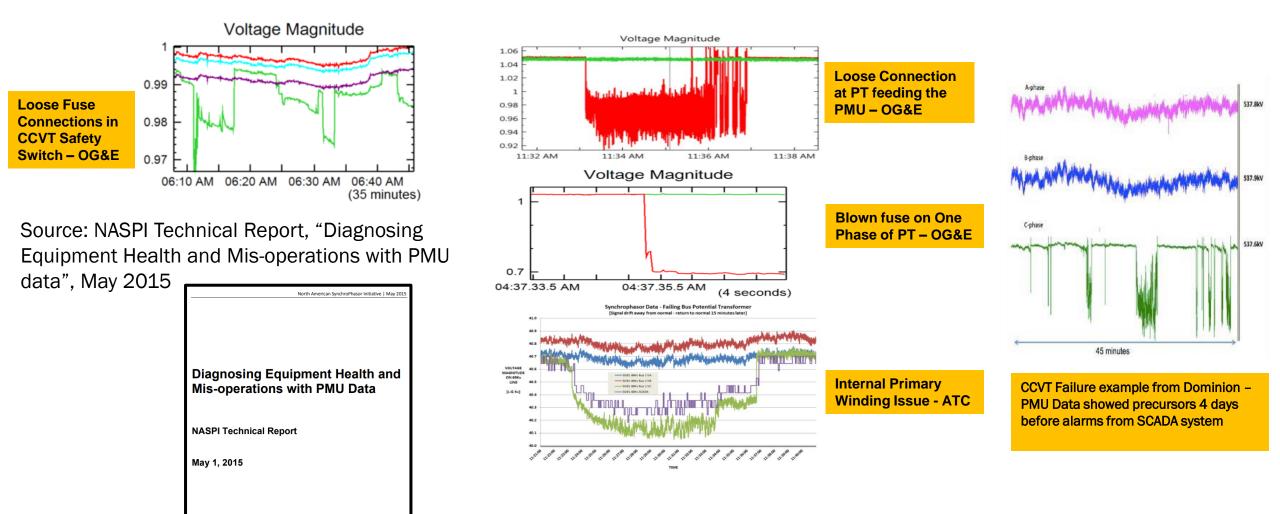
TYPES OF FAILURES IN CT'S AND PT'S THAT CAN BE DETECTED


CT Failure type	Detected with physical inspection?	Detected by EPG Solution
Polarity error	\checkmark	\checkmark
Loose or corroded connections	\checkmark	\checkmark
Open CT secondary	\checkmark	\checkmark
Turn-to-turns shortage within same coil	×	\checkmark
Turn-to-ground shortage	×	\checkmark
Turn-to-turn shortage between different coils	×	\checkmark
Ratio setting error	×	\checkmark
Saturation of CT core and dielectric breakdown	×	\checkmark

PT Failure type	Detected with physical inspection?	Detected by EPG Solution
Blown Fuse	\checkmark	\checkmark
Loose connections	\checkmark	\checkmark
Primary winding issues	×	\checkmark
Secondary winding issues	×	\checkmark

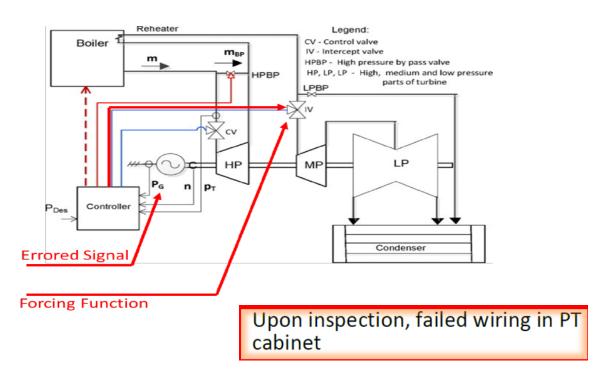
DEPLOYMENT AT NYPA

- Deployed at a major 345 KV substation
- Monitoring 21 voltage transformers (CCVTs and PTS) and 27 CTs
- Alarms sent to NYPA personnel by email and includes screenshot of event/alarm with signatures
- Quick visual inspection before performing further investigation
- Used as supplementary Information along with other sources of information



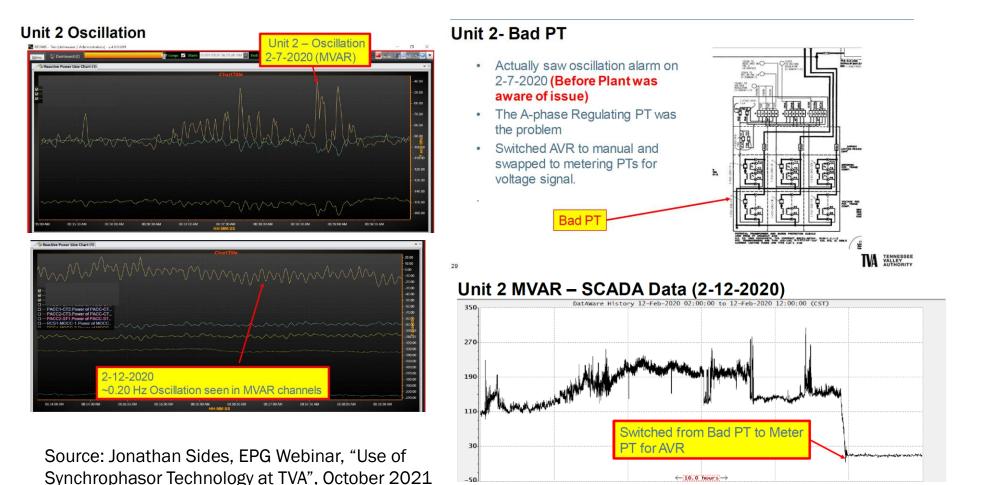
EXAMPLES OF INSTRUMENT TRANSFORMER FAILURES IN PMU DATA

LOOSE CONNECTIONS, WINDING ISSUES, BLOWN FUSES, ETC.


NASP North American

JAN 11, 2019 - EASTERN INTERCONNECTION OSCILLATIONS

- NERC findings point to failure of PT connection that triggered Interconnection Wide Oscillations
- Forced Oscillation at a plant caused eastern interconnection wide oscillations with large amplitudes (> 150 MW peak-peak)
- Important to identify oscillations and locate source
- Important to identify and address root-cause to prevent system wide impact



Source: NERC, Oscillation Analysis Webinar, September 13, 2019

© ELECTRIC POWER GROUP 2024. ALL RIGHTS RESERVED

FAILING PT CAUSED MVAR OSCILLATIONS AT GENERATING STATION

Oscillations can reveal issues with asset/equipment

DMS 5.0 - iTAM Demo 1	[rtdmsuser]	Administrators] -	- v.5.0.0.10
-----------------------	-------------	-------------------	--------------

u 🔄 Transmission Asset Monitoring 1*

XF1_Central Voltage									
	INTE	GRATIO	N WIT		/IS – V	ALIDA	TION	AND	
			VI	SUALIZ	ATION				
M — XF1@CENTRALVa.VM M — XF1@CENTRALVb.VM M — XF1@CENTRALVc.VM	02:54:30 PM	02:55:00 PM	02:55:30 PM	02:56:00 PM	02:56:30 PM	02:57:00 PM	02:57:30 PM	02:58:00 PM	02:58:30
t Central Voltage			_	East - Central 765kV Lir	e				
			Failing C	CVT - Precurs	or				
■ — EAST@CENTRAL.VAYPM.VM ■ — EAST@CENTRAL.VBYPM.VM ■ — EAST@CENTRAL.VCYPM.VM									
02:54:00 PM	02:54:30 PM	02:55:00 PM	02:55:30 PM	02:56:00 PM HH:MM:SS	02:56:30 PM	02:57:00 PM	02:57:30 PM	02:58:00 PM	02:58:30
M Voltage 3				North - Central 765kV Li	ne				
☑ — NORTH@CENTRALVAYPM.VM ☑ — NORTH@CENTRALVBYPM.VM ☑ — NORTH@CENTRALVCYPM.VM								18	
02:53:30 PM	02:54:00 PM 02:54	:30 PM 02:55:00 PM	02:55:30 PM	4 02:56:00 PM HH:MM:SS	02:56:30 PM	02:57:00 PM	02:57:30 PM	02:58:00 PM	02:58:30

SUMMARY AND LOOKING FORWARD

- High Resolution Time-Synchronized Measurements can provide significant insights into equipment health and help detect precursors to equipment failure
- Compliment traditional asset management systems
- Further improvements and roadmap items:
 - Use of Machine Learning for categorization and root cause identification
 - Periodic Performance Reports for assisting asset management and preventative maintenance

Improve Safety, Increase Reliability, Prevent Customer Outages, Reduce Cost

THANK YOU

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

Electric Power Group - Synchrophasor Solutions

