

PJM Use Case of Synchrophasors – Automated Generator Model Validation (AGMV)

Yang Chen

Sr. Business Solution Engineer, Applied Innovation, PJM

Neeraj Nayak

Director, Advanced Applications and Analytics, EPG

September 27, 2023

PJM as Part of the Eastern Interconnection

Total PMUs including external companies

Substations with PMUs installed

of PMU data storage daily

(real time – 4 TB for 90 days)

----- **Calculated Values** -----Real time: 7 TB for 90 days 3-Year Archive: 80 TB

PMUs installed within PJM

per second sampling rate

Motivation

Need for Model Validation

- Dynamic models are used to represent transient behavior during grid disturbances.
- Inaccurate models can lead to incorrect assessment of system responses

Source: NERC Reliability Guideline, Power Plant Dynamic Model Verification using PMUs, September 2016

Motivation – Need for Automation

Prior to AGMV: PJM Manual Process for GMV

W. Qiu, T. He, B. Choi and Y. Mao, "PJM Static and Dynamic Model Validation Efforts and Experiences for MOD-033," IEEE PES General Meeting, 2017.

EPG's Generator Model Validation (GMV)

© Electric Power Group 2023. All rights reserved

www.pjm.com | Public

PJM©2023

EPG's GMV

Use of PMU Data for Automated Validation of Generator Models

Automated Process Using GMV

Automated Generator Model Validation (AGMV) – Real-Time

- Run continuously as a service, automatically triggered after significant events
- · Validate multiple events and multiple generators simultaneously
- Quantify mismatch and identify good vs. questionable (programmatic not visual)¹
- Automated email report generation for NERC compliance

Offline Generator Model Validation and Calibration

- Perform detailed analysis offline
- Sensitivity analysis to identify key parameters
- · Calibration and tuning to correct the generator model
- · Generate automated report for NERC compliance

¹W. Ju, N. Nayak et al., "Indices for Automated Identification of Questionable Generator Models Using Synchrophasors," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1–5

Comprehensiv

Generator Validation for Event 1

Event Information

Event File Name: Load Trip Event 08-21-2023 02-45-11.412 PM.csv

Table I: Summary of Validation Results

Variable	Value
Number of generator models validated	1
Number of good generator models	1
Number of questionable generator models	0

Table II: Summary of Validation Results for Individual Generators

Generator ID	Validity
GENERATOR 1	Good

Validation plots for Generator1

[©] Electric Power Group 2023. All rights reserved

0.861

0.794

>0.5

.**⊅**∕pjm

AGMV Deployment in PJM – Data Flow

FR, VM, VA, IM, IA

Phasor Data Concentrator (PDC)

Phasor Data Concentration

Dynamics Monitoring System (RTDMS)

Real-Time

 Real-Time Situational Awareness

Data Storage

Enhanced Grid Event Notifications System (eGENS)

Detect Events
(Line | Gen | Load
Tripping)

Report and Email

Automated Generator Model Validation (AGMV)

Unsupervised Automation

- Generator Model Validation
- Report and Email

Power Flow Data Dynamic Model Data

Comparison: Then & Now

	THEN			NOW		
	Months	Weeks		Minutes		
	Manual (No PMUs)	Manual (PMUs Without Automation)		AGMV		
	Establish system conditions	Identify events		Unsupervised automation		
RISONS		Manually draft NERC MOD-033 report		Automated report for NERC MOD-033		
COMPA	Once every two years for NERC compliance			Automated for each system event		

J	pjm			AGMV Examples
			Generator	Event
	Example	1	Unit 1	A – Line Tripping
		2	Unit 1	B – Line Tripping
		3	Unit 2	C – Line Tripping
		4	Unit 2	D – Load Tripping

Example 1: Unit 1 With Line Tripping Event A

Example 2: Unit 1 With Line Tripping Event B

www.pjm.com | Public

Example 3: Unit 2 With Line Tripping Event C

Example 4: Unit 2 With Load Tripping Event D

AGMV Results Summary

Criteria

	Generator	Event	Validation Result	RMSD	Comprehensive Similarity
1	Unit 1	A – Line Tripping	Questionable	< 0.09	> 0.85
2	Unit 1	B – Line Tripping	Good	< 0.1	> 0.4
3	Unit 2	C – Line Tripping	Good	< 0.2	> 0.5
4	Unit 2	D – Load Tripping	Good	< 0.2	> 0.5

Conclusion

BENEFITS TO PJM

Greatly Reduce Workload

Unsupervise d Automation No Engineering Judgement Needed for Criteria Setting

One Event to Validate Multi-Gens

Re-run Capability

Future Work

Statistical Analysis for Better Criteria Threshold Setup

Model Validation for IBRs

Use reports from all previous events.

Playback alone with PMU data may not be enough.

Other model parameters (like voltage control reference) might also be needed.