Maintaining Precise Time for Power System Applications in the Event of Wide-Area Loss of GPS

Dustin Williams, Burns & McDonnell

Motaz Elshafi, Schweitzer Engineering Laboratories, Inc.

Topic introduction

- Critical infrastructures need precise timing
- Paradigm shift prevents complete reliance on satellite sources, allowing packet networks to assist
- This solution iteration uses PRTC that provides high-accuracy time during GPS outages
- Next solution iteration uses ePRTC to provide best-in-class accuracy time during GPS outages

Time distribution gateways

- Input time
 - Satellite-based GPS or IRIG-B
 - PSN-based via1588 TP
- Output time
 - IRIG-B

– PTP PP

Concept Validation

Performance comparison

- **PRC** ITU-T G.811
- PRTC 100 nanoseconds to UTC with GPS
- PRTC holdover
 - 200 nanoseconds for
 1 day with internal
 rubidium oscillator
 - Better accuracy achieved with cesium-assisted PRC

- **ePRC** ITU-T G.811.1
- ePRTC 30 nanoseconds to UTC with GPS
- ePRTC holdover
 - 100 nanoseconds for 14 days
 - Better accuracy achieved with modern cesium ePRCs

Solution – cesium-backed PRTC plus TDG

- Incorporates PRTC plus TDG technologies
 - Better holdover performance for PTP in the WAN
 - Better accuracy and performance for PTP in the LAN
- Is proven to work well on 14-day loss of GPS

Centralized timing network design w/ PRTC Primary PRTC Backup PRTC Cs Cs GM clock GM clock -► Frequency (SyncE) ► PTP telecom ► PTP power ---- IRIG-B TDG TDG TDG GPS IRIG Relay PMU RTU

Here is what we needed

- Ideally, we needed a high-accuracy time reference better than the system under testing
- What we had was a system of equal performance (due to budget and equipment constraints)

Here is what we had

- GPS
- PRC (cesium clock that complied to ITU-T G.811 specifications)
- PRTC and ePRTC (hardware, software, license, and configuration in place to enable PRTC and ePRTC functions)

Test setup – equipment and test set

- 2 PRTCs
 - 1 PRTC under testing
 - 1 PRTC-calibrated test set
- PSN transport for PTP TP with 3 simulated sites
- TDGs at 3 simulated sites
- PTP test set to log time error for more than 14 days

Scenarios

Baseline test cases

Time error measurements at

- GM clock (calibrate PTP test set)
- PSN transport device at Sites 1, 2, and 3
- TDG at Site 3 DUT

Negative test cases

Remove GPS antenna and qualify TE at TDG

- 1. PRTC plus cesium holdover
- 2. PRTC plus cesium recovery

PRTC plus cesium holdover over 14 days

PRTC plus cesium holdover over 14 days

Results – PRTC without GPS and with GPS

Results – PRTC without GPS and with GPS

Lessons learned

- Budget appropriately
- Know your cable specifications
- Ensure 3 weeks of full GPS lock ensure logs are clean with no bumps in the night

Conclusion

- PRTC plus cesium solution performance was validated
- TDG proved that hybrid approach of satellite- and PSN-based time sources can help mitigate disruption and protect critical infrastructure

Thank you

