

GNSS Vulnerabilities

Common-Sense Solutions

NASPI Work Group Meeting Charlotte, NC 27 September 2023

Allan Armstrong@meinberg-usa.com

Agenda

GNSS Vulnerabilities: Jamming & Spoofing Mitigation Tools

Jamming: Civilian vs. Military Jamming
Strike3 project
Holdover Oscillators
Redundant Receivers & Remote Antennas
Terrestrial Time Transport

Spoofing – How They Do It
Raising the Bar
GNSS Consistency Checks
Trusted Reference Source
Navigation Message Authentication

LAB & Field Testing
Summary & Recommendations

GNSS Vulnerabilities

Jamming

- Quite common problem, easy to solve
- Usually an unintentional "drive-by"
- Military jamming rare

Spoofing

- Rare problem
- Very serious if it happens
- Good mitigation tools available

Mitigation Tools

- Holdover Oscillators
- Redundant Receivers & Remote Antennas
- Terrestrial Time Transport PTP & DTM
- Multi-Constellation & Multi-Band Receivers
- GNSS Consistency Checks
- Trusted Reference Source
- Navigation Message Authentication

How are these used? What are they used for? What is most effective?

GPS Jamming

Civilian "Accidental" Jamming

- Drivers trying to hide their location
 - From their employer drivers
 - From authorities professional car thieves
- Short-term
- Holdover oscillators a good (great) solution

Military Jamming

- Affected areas include Scandinavia, Baltic States, Balkans, Ukraine, Middle-East
- Rapidly increasing to counter drone usage
- Persistent
- Terrestrial time transport generally needed

How Serious is GNSS Jamming?

STRIKE3 Project

- 3-year EU-H2020 project co-funded by European GNSS Agency (GSA)
- Monitoring stations in 23 countries around the globe
- > 450,000 interference events
 - 73,000 major impact on GNSS
 - 59,000 from jamming devices
- Extensive reports available here:
 https://aric-aachen.de/strike3/S3-work/

Duration of Jamming Events

Vast majority short duration

Fraction of events	Duration	
0.015	> 5 minutes	
0.0022	> 30 minutes	
0.0012	> 60 minutes	
1.0x10 ⁻⁵	> 1 day	

Holdover Oscillator Performance

Holdover Accuracy		OCXO SQ	OCXO MQ	OCXO HQ	OCXO DHQ	Rubidium
Frequency	1 day	5x10 ⁻⁹	1.5x10 ⁻⁹	5x10 ⁻¹⁰	1x10 ⁻¹⁰	2x10 ⁻¹¹
	1 year	2x10 ⁻⁷	1x10 ⁻⁷	5x10 ⁻⁸	1x10 ⁻⁸	5x10 ⁻¹⁰
Time	1 day	± 220 μs	± 65 μs	± 22 μs	± 4.5 μs	± 0.8 μs
	1 week	± 9.2 ms	± 2.9 ms	± 1.0 ms	± 204 μs	± 34 μs
	1 month	± 120 ms	± 44 ms	± 16 ms	± 3.3 ms	± 370 μs
	1 year	± 4.7 s	± 1.6 s	± 788 ms	± 158 ms	± 8 ms

Redundant Receivers & Remote Antennas

Locate antennas as far away from each other as possible.

If you have a big site, you can get good protection from local jammers.

and improved protection from spoofing.

- 300 m RG-58
- 700 m RG-213
- 2 km MMF
- 20 km SMF

Standard L1 (1.5 GHz) Receiver

- 70 m H155
- 150 m H2010
- 50 km SMF

Terrestrial Time Transport

External time sources

 NIST, National Labs, Stock Exchanges (NYSE), TaaS providers (Equinix, Hoptroff, ...)

G.8275.1 ±1.5 μs

 Requires <u>Full Timing Support</u>, all switches in path must be PTP-aware (BC or TC), unlikely in existing networks

G.8275.2 ±1.5 μs

 Requires <u>Partial Timing Support</u>, performance depends topology & traffic conditions, dependent on GNSS so not a backup for jamming

Dark fiber, dedicated λ

• Expensive, latency is a function of λ

PTN

- PTN = Precision Time Network first implemented by NetInsight Nimbra ITU-T SG15.Q13 contrib WD13-15
- Turk Telekom has achieved ≤ 138 ns MTIE over an existing MPLS PTN from Adana-Istanbul ~1200 km with no on-path timing support

Spoofing – How They Do It

STEP 1 - build the hardware

- Sophisticated software defined radios (SDR) available on-line for affordable prices -- \$320 for this example
- Capable hardware
 - 256 & 1024 QAM
 - Covers GNSS frequency ranges
- Free open-source GPS-spoofing software available on github

STEP 2 – target your infrastructure

- Find out where your antennas are
- Get close to you to avoid general detection

Raising the Bar on Spoofers

TABLE STAKES

- They must build one spoofing transmitter for each satellite you are tracking
- How many are you tracking? How do they know?
 Typically ~8 satellites in view
- So, they need 8-10 SDRs

MULTI-CONSTELLATION RECEIVER

- If you track all four constellations GPS, Galileo, GLONASS, Beidou – they must simulate 4x more
- Now, they need 32-40 SDRs

MULTI-BAND RECEIVER

- Each constellation broadcasts in 3 different bands
- If you monitor all 3, and check for consistency, ...
- Now, they need 96-120 SDRs

How Do We Ensure GNSS Inputs are Legit?

Consistency Checks

1. Power

- Spoofer must overpower existing GNSS signal
- Set a maximum received power, must be measured after demodulation, not RF front end
- How does the spoofer know he is using enough power? Can the spoofer observe the receiver?
- Can work really well as a consistency check

2. Modulation

Sounds good and sophisticated, but GNSS signals are well documented and SDRs are very capable

3. # Satellites

- Interesting information, worth alarming or notifying of changes
- Not a direct indication of spoofing

4. Position

- May change as time is hacked, you probably know where your receiver is and it's probably not moving
- Well worth it

5. **Time** – a simple and very powerful check

Trusted Reference Source

- Time is not supposed to drift
- if you know your reference well, you know how much it can drift
- If the signal drifts more than the reference, you know you are getting spoofed
- If your reference is good, e.g. quite stable, any spoofing that "fits the envelope" isn't useful

Navigation Message Authentication

4 GNSS Constellations

Fugro AtomiChron[™]
90 Ground Reference Stations
orbital and clock corrections
security hash

GNSS NMA Hash asymmetric cryptography

Control

Centers

14 Inmarsat Satellites

Septentrio mosaic-T
GNSS RX chipset

Meinberg GXL Receiver

Jamming & Spoofing Testing in the Lab

GNSS Timing Receiver

Jamming & Spoofing in the Field: Norwegian Anti-Jamming Project

Location: Andøya, Norway

(near Andenes)

Dates: 18-22 September 2023

Low population density, favorable geography (no neighbors)

3 Test Locations

- 1. Main, high-effect jammer & sophisticated spoofing attacks
- 2. Small, low-effect jammers, "sand box"
- 3. Small, low-effect jammers in and on cars

Summary & Recommendations

Problem	Baseline Solution	Enhanced Solution
Jamming	Holdover OscillatorTerrestrial Time Transport	 Redundant Receiver & Remote Antenna
Spoofing	 Multi-Constellation & Multi-Band Receiver Resilient Receiver 	 Redundant Receiver & Remote Antenna Trusted Reference Source Navigation Message Authentication

Thank You!

The Synchronization Experts.