

Cloud Hosted Linear State Estimator

Proof-of-Concept

Xiaochuan Luo

MANAGER, ADVANCED TECHNOLOGY SOLUTIONS

Outline

Background and business needs

Proof-of-Concept Cloud WAMS

Conclusions and future work

PMU Infrastructure at ISO New England

- >100 PMUs in New England and constantly growing per OP-22
- Full observability of 345 kV with some redundancy
- Operational since 2013
- Selected external PMU data from NYISO, PJM, MISO, SPP, Southern Company and TVA via EIDSN
- Also share PMU data with other RCs

Key PMU-based Operational Processes

- Data Quality Monitoring System (DQMS)
 - ✓ Online detection, reporting and diagnose of "bad" PMU data
- PhasorPoint Application
 - ✓ Main application for visualization, event detection & analysis, and historian
- Online Oscillation Management
 - ✓ Oscillation detection, source location, notification
- Automatic Power Plant Model Verification (APPMV)
 - ✓ Event verification, phasor-based playback simulation, result analysis, notification
- M/LCC-21
 - ✓ Backup ACE calculation, generation dispatch when SCADA/EMS is lost.
- Linear State Estimation (PoC)
 - ✓ Backup for a regular State Estimation

ISO-NE 2024 Synchrophasor Scorecard

- Secure the Synchrophasor Infrastructure
 - Emerging Work Request (EWR) to develop a roadmap and bring synchrophasor infrastructure into CIP
- Further Enhancement of Business Applications
 - Oscillation Source Location (OSL)
 - Redesign Control Room PMU Situation Awareness Displays
- Streamline PMU Support and Maintenance Processes (including TOs) to Ensure Data Quality

Business Needs for a Better WAMS

PMU Data Exchange

- Today: multiple bilateral data exchange via EIDSN for predefined data points.
- Need a simpler solution with more flexibility
- Need an EI-wide PMU registry for easy metadata access
- Need to access external historical data on demand
 - Without streaming and storing predefined data points.

Online Operator Collaboration

- Today: each RC has its own version of software, configured and visualized differently.
- Need an EI-wide WAMS fed by data from most if not all RCs
- Need to speak the same language as the neighboring RC operators
- Potentially eliminates the need for raw data sharing at all

Why the Cloud?

- Cost-effective, readily available and scalable infrastructure
- Logically centralized, physically distributed computing
 - Best of both worlds
- Platform ideal for multilateral data/results exchange
 - Getting data from everywhere and delivering to everywhere
 - Hosting applications online

Proof-of-concept Cloud-hosted WAMS

- Project collaborations among ISO-NE, NYPA, Cornell University and Washington State University, back in 2014/2015
- Objective: demonstrate a cloud-hosted distributed platform for real-time PMU data collection, storage, processing and dissemination to achieve wide-area monitoring
- Technical Aspects Evaluated:
 - Security
 - Network latency
 - Fault tolerance and recovery
 - Data consistency

Overview of the Cloud-hosted WAMS

Security

- Amazon Virtual Private Cloud (VPC)
- SSH Tunnel for data stream
 - Loop playback 60 minutes of PMU data from ISO-NE and NYPA
- Cloud Data Storage
 - Encrypted using a key
 - Generated by and stored in Amazon AWS
 - Managed by users

Latency

- EC2 Latency:
 - Average Round Trip Time (RTT) = 245ms
 - 1st Percentile = 211ms
 - 99th Percentile = 255ms
- VPC Latency:
 - Average RTT = 261ms
 - 1st Percentile = 228ms
 - 99th Percentile = 270ms
- Delta is approximately +15ms
- These numbers do not include SE compute time (75ms-100ms)
- Adding SSH tunnels added less than 2ms to RTT

Operating Cost

Instances	Туре	Number	Price	Total
Cloud Relay	C3.large	1	\$0.11	\$0.11
Cloud Manager	C3.large	1	\$0.11	\$0.11
Visualizer	C4.largeWin	1	\$0.19	\$0.19
LSE	C4.xlargeWin	1	\$0.39	\$0.39
Raw Archiver	C3.xlarge	3	\$0.21	\$0.63
LSE Archiver	C3.xlarge	4	\$0.21	\$0.84
Forwarder	C3.large	2	\$0.11	\$0.22
Total		13		\$2.47

- Optimizing cost was not a major objective for PoC
 - Prioritized convenience & repeatability
- An overall cost savings compared with the on-premises IT investments required for similar performance

Histogram: Raw Data Round Trip Latencies

Graphs: Number of times a particular latency occurs

Raw Data Round Trip Latency

Histogram: LSE Results Round Trip Latencies

Graphs: Number of times a particular latency occurs
SE Results Round Trip Latency

Other Performances

- Fault Tolerance & Recovery
 - Two parallel systems
 - Independent
 - Manual redundancy
 - Restarting a data center
 - Needs ~500 s

- Consistency
 - No raw data loss
 - Few SE data loss
 - Due to replay looping
 - Within ~100 ms
 - End users have consistent data/results from both data centers

Conclusions from the PoC project

- Cloud is a feasible "central" platform for PMU-based Wide Area Monitoring
- Security, Latency, Fault Tolerance, Data Consistency performances meet expectations

Benefits:

- Eliminate the need for multiple bi-lateral data exchange
- Only need to configure and maintain one copy of application
- Same real-time visualization, no discrepancy during collaboration
- Flexible and scalable
 - Easily adaptable to changes in business needs, technical requirements,
 data volume increase, participant changes, etc.

Future Work

- Eastern Interconnection Situational Awareness Monitoring System (ESAMS)
 - Host by PJM between June 2021 and March 2022
- Potentially to host ESAMS on the cloud
- Collaboration among ISO-NE, PJM, AWS, PNNL, LBL, and EPG for demonstration
- Proposal submitted to DOE in August

Questions

