

Engineering Analysis Task Team

Evangelos Farantatos (EPRI) – Co-Lead Matthew Rhodes (SRP) – Co-Lead

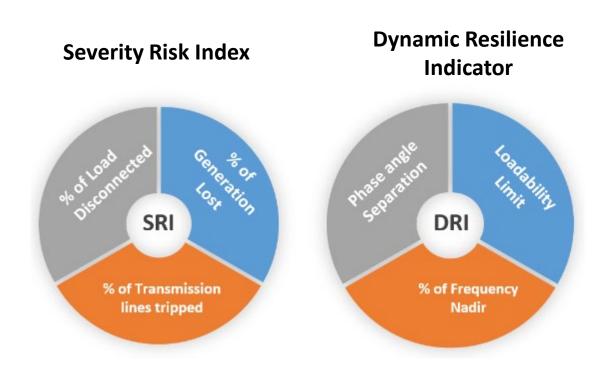
NASPI Workgroup Meeting Break-Out April 4-5, 2023

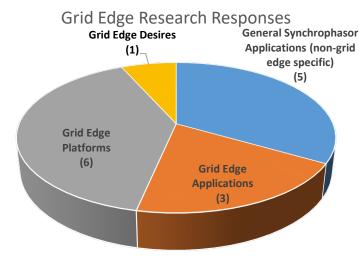
EATT Mission Statement

- 1. Proliferate the development, testing, and validation of engineering applications and data analysis methods that use synchronized measurements systems.
- 2. Assist in the deployment and utilization of synchronized wide-area measurement applications.
- 3. Formulate and guide recommended R&D activities related to the advancement of wide-area synchronized measurement systems and their applications.

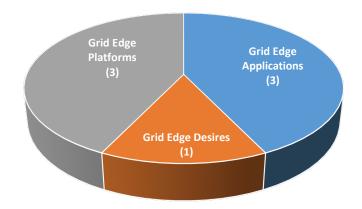
EATT Break Out Agenda

- 3:00-3:15 Introduction to the EATT and Round table introductions
- 3:15-3:45 **Special Guest Presentation:** The Grid Event Signature Library: A Centralized Repository of Power System Waveform Data
 - Aaron Wilson (Oak Ridge National Laboratory) and Jhi-Young Joo (Lawrence Livermore National Laboratory)
- 3:45-4:15 Special Guest Presentation: The Use of High-Speed Synchronized Measurements to Create Dynamic Indicators of Grid Resilience
 - David A. Schoenwald (Sandia National Laboratory)
- 4:15-4:25 Edge Computing Survey Results
- 4:25-4:35 Advanced Model Validation & Calibration White Paper update
- 4:35-5:00 What do you want to see for the future of EATT?


Grid Event Signature Library



The Use of High-Speed Synchronized Measurements to Create Dynamic Indicators of Grid Resilience



EATT Edge Computing Survey

- EATT released a survey to develop a beginning understanding of edge computing techniques and how synchrophasor data can contribute to such technologies.
- The survey was sent to 3 types of entities and included one question seeking expertise and knowledge on existing or indevelopment synchrophasor edge computing applications.
 - Research
 - Vendor
 - Utility

Main results demonstrate an underlying challenge to understand the true definition of "grid edge" and the lack of a well-defined category of applications.

Advanced Model Validation & Calibration

- EATT White Paper
- Lead: Honggang Wang (previously with GE)

Objective: Document industry advancements in model validation and calibration

Drafting has been completed

1	Introduction		1
	1.1	Motivation for Model Validation & Calibration	1
	1.2	Power System Model Validation Overview	3
	1.3	State-of-the-Art Toolsets	5
	1.3.1	Power Plant Parameter Derivation (PPPD)	7
	1.3.2	Power Plant Model Validation Tool (PPMV)	9
	1.3.3	Power Plant Model Validation Simscape Design Solution	11
	1.3.4	Generator Model Validation (GMV)	12
	1.3.5	PhasorAnalytics Dynamic Model Validation & Calibration	14
	1.4	Current Limitations	15
2	2 Advanced Model Validation		17
	2.1	Enhanced Model Validation Procedure	17
	2.2	Performance Metrics	20
3	Advanced Model Calibration		25
	3.1	Advanced Parameter Selection	25
	3.1.1	Trajectory Sensitivity Approach	25
	3.1.2	Global Sensitivity Approach	26
	3.1.3	SVD Based Methods	28
	3.1.4	Similarity Based Methods	30
	3.1.5	Empirical Gramian Based Method	31
	3.2	Advanced Model Parameter Tuning	32
	3.2.1	Estimation Based Approach	32
	3.2.2	Optimization Based Approach	35
	3.	2.2.1 Efficient Trust Region Approach	35
	3.	2.2.2 Black-Box Optimization Based Approach	36
	3.	2.2.3 Approximate Bayesian Computation Based Approach	38
	3.2.3	Machine Learning Based Approach	40
	3.	2.3.1 Q-Learning Based Approach	40
	3.	2.3.2 Conditional Variational Autoencoder based Approach	42
	3.3	Performance Validation Process and Metrics	45
4	4 Multiple Event Based Model Validation & Calibration		48
	4.1	Motivation for Using Multiple Events	48
	4.2	Event Selection	50
	4.3	Multiple Event Model Calibration	52
	4.3.1	Simultaneous Calibration	52
	4.3.2	Sequential Calibration	54
	4.3.3	Distributed Calibration	58
5	Conclusions		61

What do you want to see from EATT?

- Synchrophasor Edge Computing White paper Is this of value to the NASPI community?
- IBR Performance Monitoring Analytics and Tools –
 Data, ML analytics and BES impact identifications –
 Can synchrophasors help and what type of application is needed?
- Other Ideas for EATT products?