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The Increasing Renewables Challenge Power Grids
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Fig. 1: Global Energy Transformation Prediction: https://www.irena.org (left);
Average duration of power interruptions (right)
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When renewable energy increases constantly, faults or 
disturbances also become more frequent in these years.

http://www.eia.gov/todayinenergy/images/2021.11.10/main.svg
https://www.irena.org/


Faults may Trigger Blackouts and Wildfires

Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in 
California in 2020 cost around $12 billiion

Faults without efficient monitoring strategies may trigger 
blackouts and wildfires.
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Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in 
California in 2020 cost around $12 billiion

Faults without efficient monitoring strategies may trigger 
blackouts and wildfires.
Machine learning is promising to be the solution, but its reliability 
is not guaranteed when applied to the stochastic power grids.
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Black-box Machine Learning is Powerful but Fragile

Fig. 3: Panda image is recognized as 
gibbon by adding trivial noise [1] Goodfellow 
et al. 2014. . ML is vulnerable and can 

be misled or attacked by 
noise and perturbations;

ncing

Fig. 4: The stop sign with some marks 
misleads the deep neural networks [2] K.
Eykholt et al., 2018 IEEE/CVF.
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Black-box Machine Learning is Powerful but Fragile

Fig. 3: Panda image is recognized as 
gibbon by adding trivial noise [1] Goodfellow 
et al. 2014. . ML is vulnerable and can 

be misled or attacked by 
noise and perturbations;
Perturbations in stochastic 
power grids deteriorate 
the performance of ML.
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Fig. 4: The stop sign with some marks 
misleads the deep neural networks [2] K.
Eykholt et al., 2018 IEEE/CVF.
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Central Ideas:
Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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Problem Formulation of Fault Location

Given a few measured node
voltages in Fig. 5, and partial
labels denoting location.
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Fig. 5: The IEEE 123-bus test feeder, 
where red ones are measured.
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Goal: Robust to sparse 
observation, low label rates, 
varying loads and topology 
changes when predicting 
faults on the node level.
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Problem Formulation of Fault Location

Given a few measured node
voltages in Fig. 5, and partial
labels denoting location.
Goal: Robust to sparse 
observation, low label rates, 
varying loads and topology 
changes when predicting 
faults on the node level.
Traditional methods: 

Hardwarea; 
Impedance-based,
Traveling-wave-based, 
Knowledge-basedb
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Fig. 5: The IEEE 123-bus test feeder, 
where red ones are measured.



Our Main Contributions 1

Our approach: a two-stage graph neural network framework:

Fig. 6: Our two-stage graph neural network framework

1Wenting Li, Deepjyoti Deka, “PPGN: Physics-Preserved Graph Networks for
Fault Location with Limited Observation and Labels”, Hawaii International Conference 
on System Sciences (HICSS), 2023
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Our Main Contributions

Our approach: a two-stage graph neural network framework:
GI in stage I learns the graph embedding of power networks for 
the challenge of low observability.

ncing

Fig. 7: Our graph learning at stage I
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Our Main Contributions

ncing

Fig. 8: Our graph learning at stage I
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Our approach: a two-stage graph neural network framework:
GI in stage I learns the graph embedding of power networks for 
the challenge of low observability.



The key is the adjustable adjacency A of GI using shortest
distance.

Fig. 9: (a) original graph; (b) reduced graph defined by A

ncingPhysics-Informed Machine Learning for Enha 4/5/2023 12 / 30

Our Main Contributions

Our approach: a two-stage graph neural network framework:
GI in stage I learns the graph embedding of power networks for 
the challenge of low observability.



Our Main Contributions
Our approach: a two-stage graph neural network framework:

GII in stage II further enhances location accuracy to face the
challenge of low label rates.

The key of adjacency B of GII with the output of GI : neighborhood
property 1.
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Fig. 10: The neighborhood property.
1W. Li, D. Deka, “Real-Time Faulted Line Localization and PMU Placement in

Power Systems Through Convolutional Neural Networks”, Transaction on Power
System, 2019.
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Our Main Contributions

Fig. 11: Our stage II graph learning framework

ncingPhysics-Informed Machine Learning for Enha 4/5/2023 14 / 30

Our approach: a two-stage graph neural network framework:
GII in stage II further enhances location accuracy to face the
challenge of low label rates.

GII represents the correlations of labeled and unlabeled
data samples.



Location Accuracy Rate (LAR) Comparison

Fig. 12: LAR Comparison at different label rates2

24480 testing cases by OpenDSS in the IEEE 123-node 
benchmark system.

ncing

2LAR = The number of correctly located faults , Label rate = The number of training data
The total number of faults The total number of data
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Location Accuracy Rate (LAR) Comparison

Fig. 12: LAR Comparison at different label rates2

24480 testing cases by OpenDSS in the IEEE 123-node 
benchmark system.
System has voltage regulators, overhead/underground lines, 
switch shunts, and unbalancing loads that vary over time.
Only 16% of the nodes in the system are measured ( 21 
measured nodes );
Outperforms CNN, NN, and GCN for various faults.

ncing

2LAR = The number of correctly located faults , Label rate = The number of training data
The total number of faults The total number of data
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Robust to Load Variations

Table 1: LARs (%)when Loads Vary in Different Ranges

∆p (p.u.) 0.53 0.58 0.64 0.69 0.74
CNN 93.9 85.3 84 83.9 82

SPG NN 92.5 80 77.4 76.7 74
GCN 64.3 57.7 56.4 55.6 55.1

Proposed 98.9 96.6 96.3 95.8 95.1
CNN 96.5 88.3 87.8 85.3 82.5

DPG NN 98 89.3 88.2 86.7 85.1
GCN 98.3 84.0 83.7 82.2 78.8

Proposed 98.4 94.1 93.7 92.7 92.2
CNN 97.5 96.2 96.1 95.1 94.6

PP NN 95.6 92.2 90.3 87.9 85.9
GCN 99.5 96.5 96.5 96.6 96.7

Proposed 99.9 99.6 99.4 99.2 98.4

Generate another 110160 faults when load and topology change
No retraining is needed.
Achieves up to 15% improvement than the baseline classifiers.
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Central Ideas:
Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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Background

Fig. 13: Neural Networks

Table 2: The LAR when data perturbs 
due to different load variations with 
magnitudes δ1 per unit (p.u.)

Load Variations (p.u.) δ1= 1 δ1 =1.5 δ1 =2 δ1 =3
LAR (%) 96.25 81.61 71.96 57.5

Motivations: Perturbations in power 
grids degrade the performance of 
NNs, shown in the Table 2.
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Background

Fig. 13: Neural Networks

Table 2: The LAR when data perturbs 
due to different load variations with 
magnitudes δ1 per unit (p.u.)

Motivations: Perturbations in power 
grids degrade the performance of 
NNs, shown in the Table 2.
Goal: Train neural networks to be 
robust to natural perturbations in 
power grids.
The state of the art:

Adversarial training methods can 
augment the robustness of NNs 
(Madry et al. 2017, Shafahi et al. 
2020, Goodfellow and Begnio 2016).
Those perturbations are well-design
due to some malicious attacks with
weak capability to natural 
perturbations.
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Load Variations (p.u.) δ1= 1 δ1 =1.5 δ1 =2 δ1 =3
LAR (%) 96.25 81.61 71.96 57.5



Our Approach 1

1Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta
Paternina,“Physics-Constrained Adversarial Training for Neural Networks in Stochastic 
Power Grids’, Artificial Intelligence on Transaction, 2022
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Main idea: Obtain the worst-case perturbation σ constrained 
by physical laws to train the parameters θ of neural networks 
without extra training datasets.
The loss function is L(θ, σ):
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Datasets
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Fig. 14: The IEEE 68-bus 
benchmark Power Grid with five 
areas

aIEEE 68-bus system through 
power system toolbox (PST)b.
560 training data with 36 
measured buses.
Natural perturbations are 
generated when loads vary with δ1
and control input changes with δ2.

aRogers 2012.
bChow and Cheung 1992.
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Robustness to Natural Perturbations
Table 3: Location Accuracy Rate (LAR %) when the load vary within δ1

Type(Method) δ1= 1 δ1=1.5 δ1=2 δ1=3
Base 96.25 81.61 71.96 57.5

TRADES 95.89 88.21 76.96 66.61
FGSM 90.89 84.46 75.36 62.68
PGD 90.36 80.18 71.25 58.04

TRADESregu (Proposed) 97.86 89.64 81.96 73.39
TRADESphysics (Proposed) 98.21 91.96 82.86 74.64

Total number of events

TRADESregu and TRADESphysics Improve the LAR3than existing 
methods4 by 1% - 17%.

3LAR = The number of correctly located events

4where “Base” denotes the stochastic gradient descent method; “TRADESregu”:
When the physical regularization is applied. “TRADESphysics”: when regularization and
physical ranges are included; TRadeoff-inspired Adversarial DEfense(TRADES); Fast
Sign Gradient Method (FGSM); Projected Gradient Descent (PGD).
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Central Ideas:
Robustify neural networks for fault location through:
1. Designing novel architectures by preserving physics
2. Developing physics-constrained optimization for training
3. Certifying training with physics-informed bound propagation
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The State of the Art

Fig. 15: Verification is to check whether the region of NNs’ outputs (red 
areas) satisfies some decision boundary and is intractable; Interval Bound 
Propagation (IBP) method is tractable (Gowal et al. 2018)

IBP can efficiently verify it by propagating the interval bounds 
(green areas) of the regions.
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Our Approach5

Fig. 16: The voltage limits propagate; the current limits propagate

Tighter bounds of the region with physical ranges, including 
the voltage limits, current limits and their correlation.

5W. Li, K. Dvijotham, D. Deka, “Physics-Constrained Interval Bound Propagation 
for Robustness Verifiable Neural Networks in Power Grids”, AI for Energy Innovation, 
2023
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Numerical Results
Table 4: Performance comparison when loads randomly vary within 𝛿𝛿1

Type (Method) 𝛿𝛿1 = 1 𝛿𝛿1=1.5 𝛿𝛿1=2 𝛿𝛿1=3
Base (LAR %) 96.25 81.61 71.96 57.5

IBP (LAR %) 98.93 94.64 84.29 61.43
IBPPhy (LAR %) 99.64 96.61 89.29 64.29
IBP (VR %) 93.93 82.14 69.64 47.5
IBPPhy (VR %) 97.32 90.36 79.46 54.29

“Base” denotes that no verification training; “IBP” denotes the 
baseline and “ IBPPhy” denotes the proposed method.
We improve the LAR and VR 6 up to 5% and 10% respectively.

6

LAR = The number of correctly located cases
Total number of cases

VR = The number cases satisfying the specification
Total number of cases

.
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Conclusions and Future Works

The stochastic and dynamical environments in power grids require 
machine learning algorithms to be robust and interpretable;
Design a physics-preserved graph network framework for fault 
location, showing superior performance than the state of the art 
when data is imperfect (low label rates and noisy);
Propose a training algorithm with physical constraints to 
enhance robustness of neural networks in the perturbed 
environment;
Create a physics-Informed verification for neural networks in 
power grids to guarantee the reliability.
Future works will generalize the art of guiding machine 
learning with physics for extensive applications, such as stability 
prediction, state estimation.
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Thank you! Questions?

Email: wenting@lanl.gov
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Job Search for modelers of microgrids and distribution systems
Postdoc:
https://lanl.jobs/search/jobdetails/microgrid-postdoctoral-research-associate/f47f3ac6-7caf-4213-a325-f1ee3b4489e2
Scientist:
https://lanl.jobs/search/jobdetails/microgrid-scientist-scientist-2/b2696055-3997-4a53-a246-147bc4e9f2fe

mailto:wenting@lanl.gov
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