

Physics-Informed Machine Learning for Enhancing Robustness and Verification

Wenting Li, Deepjyoti Deka Theory Division (T-5) Los Alamos National Laboratory

April 5, 2023

LA-UR-23-23066

Deepjyoti Deka

Ren Wang

Mario Arrieta Paternina

Image: A matched block of the second seco

Krishnamurthy (Dj) Dvijotham

The Increasing Renewables Challenge Power Grids

Fig. 1: Global Energy Transformation Prediction: <u>https://www.irena.org</u> (left); Average duration of power interruptions (right)

 When renewable energy increases constantly, faults or disturbances also become more frequent in these years.

< □ > < 同 > < 三 >

Faults may Trigger Blackouts and Wildfires

Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in California in 2020 cost around \$12 billion

 Faults without efficient monitoring strategies may trigger blackouts and wildfires.

Faults may Trigger Blackouts and Wildfires

Fig. 2: The 2003 blackout causes 50 million people in darkness; Wildfires in California in 2020 cost around \$12 billiion

- Faults without efficient monitoring strategies may trigger blackouts and wildfires.
- Machine learning is promising to be the solution, but its reliability is not guaranteed when applied to the stochastic power grids.

Black-box Machine Learning is Powerful but Fragile

Fig. 3: Panda image is recognized as gibbon by adding trivial noise [1] Goodfellow et al. 2014.

Fig. 4: The stop sign with some marks misleads the deep neural networks [2] K. Eykholt et al., 2018 IEEE/CVF.

 ML is vulnerable and can be misled or attacked by noise and perturbations;

< □ > < 同 >

Black-box Machine Learning is Powerful but Fragile

Fig. 3: Panda image is recognized as gibbon by adding trivial noise [1] Goodfellow et al. 2014.

Fig. 4: The stop sign with some marks misleads the deep neural networks [2] K. Eykholt et al., 2018 IEEE/CVF.

- ML is vulnerable and can be misled or attacked by noise and perturbations;
- Perturbations in stochastic power grids deteriorate the performance of ML.

Central Ideas:

Robustify neural networks for fault location through:

- 1. Designing novel architectures by preserving physics
- 2. Developing physics-constrained optimization for training
- 3. **Certifying** training with physics-informed bound propagation

Central Ideas:

Robustify neural networks for fault location through:

- 1. Designing novel architectures by preserving physics
- 2. Developing physics-constrained optimization for training
- **3. Certifying** training with physics-informed bound propagation

Problem Formulation of Fault Location

 Given a few measured node voltages in Fig. 5, and partial labels denoting location.

Fig. 5: The IEEE 123-bus test feeder, where red ones are measured.

^aBrahma 2011; Džafić et al. 2016. ^bMajidi, Etezadi-Amoli, and Fadali 2014; Cher Ghasemi, and Daisy 2018.

Problem Formulation of Fault Location

- Given a few measured node voltages in Fig. 5, and partial labels denoting location.
- Goal: Robust to sparse observation, low label rates, varying loads and topology changes when predicting faults on the node level.

Fig. 5: The IEEE 123-bus test feeder, where red ones are measured.

^aBrahma 2011; Džafić et al. 2016. ^bMajidi, Etezadi-Amoli, and Fadali 2014; Chei Ghasemi, and Daisy 2018.

Problem Formulation of Fault Location

Fig. 5: The IEEE 123-bus test feeder, where red ones are measured.

- Given a few measured node voltages in Fig. 5, and partial labels denoting location.
- Goal: Robust to sparse observation, low label rates, varying loads and topology changes when predicting faults on the node level.
- Traditional methods:
 - Hardware^a;
 - Impedance-based,

Traveling-wave-based, Knowledge-based^b

^aBrahma 2011; Džafić et al. 2016. ^bMajidi, Etezadi-Amoli, and Fadali 2014; Chei Ghasemi, and Daisy 2018.

Our Main Contributions ¹

Our approach: a two-stage graph neural network framework:

Fig. 6: Our two-stage graph neural network framework

¹Wenting Li, Deepjyoti Deka, "PPGN: Physics-Preserved Graph Networks for Fault Location with Limited Observation and Labels", Hawaii International Conference on System Sciences (HICSS), 2023

Our Main Contributions

Our approach: a two-stage graph neural network framework:

• *G_l* in stage I learns the graph embedding of power networks for the challenge of **low observability**.

Fig. 7: Our graph learning at stage I

Our Main Contributions

Our approach: a two-stage graph neural network framework:

• *G_l* in stage I learns the graph embedding of power networks for the challenge of **low observability**.

Fig. 8: Our graph learning at stage I

Our approach: a two-stage graph neural network framework:

- *G_I* in stage I learns the graph embedding of power networks for the challenge of **low observability**.
- The key is the **adjustable adjacency** *A* of *G*₁ using shortest distance.

Fig. 9: (a) original graph; (b) reduced graph defined by A

< □ > < 同 >

Our approach: a two-stage graph neural network framework:

- G_{II} in stage II further enhances location accuracy to face the challenge of low label rates.
 - The key of adjacency *B* of G_{II} with the output of G_I : **neighborhood** property ¹.

Fig. 10: The neighborhood property.

¹W. Li, D. Deka, "Real-Time Faulted Line Localization and PMU Placement in Power Systems Through Convolutional Neural Networks", Transaction on Power System, 2019.

Our Main Contributions

Our approach: a two-stage graph neural network framework:

- G_{II} in stage II further enhances location accuracy to face the challenge of low label rates.
 - *G_{II}* represents the **correlations of labeled and unlabeled** data samples.

Fig. 12: LAR Comparison at different label rates²

 24480 testing cases by OpenDSS in the IEEE 123-node benchmark system.

Fig. 12: LAR Comparison at different label rates²

- 24480 testing cases by OpenDSS in the IEEE 123-node benchmark system.
- System has voltage regulators, overhead/underground lines, switch shunts, and unbalancing loads that vary over time.

Fig. 12: LAR Comparison at different label rates²

- 24480 testing cases by OpenDSS in the IEEE 123-node benchmark system.
- System has voltage regulators, overhead/underground lines, switch shunts, and unbalancing loads that vary over time.
- Only 16% of the nodes in the system are measured (21 measured nodes);

15/30

Fig. 12: LAR Comparison at different label rates²

- 24480 testing cases by OpenDSS in the IEEE 123-node benchmark system.
- System has voltage regulators, overhead/underground lines, switch shunts, and unbalancing loads that vary over time.
- Only 16% of the nodes in the system are measured (21 measured nodes);
- Outperforms CNN, NN, and GCN for various faults.

Robust to Load Variations

Table 1: LARs (%) when Loads Vary in Different Ranges

	∆ <i>p</i> (p.u.)	0.53	0.58	0.64	0.69	0.74
SPG	CNN	93.9	85.3	84	83.9	82
	NN	92.5	80	77.4	76.7	74
	GCN	64.3	57.7	56.4	55.6	55.1
DPG	Proposed	98.9	96.6	96.3	95.8	95.1
	CNN	96.5	88.3	87.8	85.3	82.5
	NN	98	89.3	88.2	86.7	85.1
	GCN	98.3	84.0	83.7	82.2	78.8
	Proposed	98.4	94.1	93.7	92.7	92.2
	CNN	97.5	96.2	96.1	95.1	94.6
PP	NN	95.6	92.2	90.3	87.9	85.9
	GCN	99.5	96.5	96.5	96.6	96.7
	Proposed	99.9	99.6	99.4	99.2	98.4

- Generate another 110160 faults when load and topology change
- No retraining is needed.
- Achieves up to 15% improvement than the baseline classifiers.

Central Ideas:

Robustify neural networks for fault location through:

- 1. Designing novel architectures by preserving physics
- 2. Developing physics-constrained optimization for training
- 3. Certifying training with physics-informed bound propagation

 Motivations: Perturbations in power grids degrade the performance of NNs, shown in the Table 2.

< □ > < 同 >

Fig. 13: Neural Networks

Table 2: The LAR when data perturbs due to different load variations with magnitudes δ_1 per unit (p.u.)

Load Variations (p.u.)	$\delta_1 = 1$	δ ₁ =1.5	$\delta_1=2$	δ ₁ =3
LAR (%)	96.25	81.61	71.96	57.5

Background

Fig. 13: Neural Networks

- Motivations: Perturbations in power grids degrade the performance of NNs, shown in the Table 2.
- Goal: Train neural networks to be robust to *natural perturbations* in power grids.

Table 2: The LAR when data perturbs due to different load variations with magnitudes δ_1 per unit (p.u.)

Load Variations (p.u.)	$\delta_1 = 1$	<u>δ1</u> =1.5	δ ₁ =2	$\delta_1 = 3$
LAR (%)	96.25	81.61	71.96	57.5

Background

Fig. 13: Neural Networks

Table 2: The LAR when data perturbs due to different load variations with magnitudes δ_1 per unit (p.u.)

Load Variations (p.u.)	$\delta_1 = 1$	δ ₁ =1.5	δ ₁ =2	$\delta_1 = 3$
LAR (%)	96.25	81.61	71.96	57.5

- Motivations: Perturbations in power grids degrade the performance of NNs, shown in the Table 2.
- Goal: Train neural networks to be robust to *natural perturbations* in power grids.

• The state of the art:

- Adversarial training methods can augment the robustness of NNs (Madry et al. 2017, Shafahi et al. 2020, Goodfellow and Begnio 2016).
- Those perturbations are well-design due to some malicious attacks with weak capability to natural perturbations.

< □ > < 同 > < 三 >

- Main idea: Obtain the worst-case perturbation σ constrained by physical laws to train the parameters θ of neural networks without extra training datasets.
- The loss function is $L(\theta, \sigma)$:

¹Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta Paternina, "Physics-Constrained Adversarial Training for Neural Networks in Stochastic Power Grids', Artificial Intelligence on Transaction, 2022

- Main idea: Obtain the worst-case perturbation σ constrained by physical laws to train the parameters θ of neural networks without extra training datasets.
- The loss function is $L(\theta, \sigma)$:

$$\min_{\theta} \mathcal{L}(\theta) = \underbrace{\mathcal{L}_{\mathsf{original}}(\theta)}_{\mathsf{Data Fitting}}$$

¹Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta Paternina, "Physics-Constrained Adversarial Training for Neural Networks in Stochastic Power Grids", Artificial Intelligence on Transaction, 2022

- Main idea: Obtain the worst-case perturbation σ constrained by physical laws to train the parameters θ of neural networks without extra training datasets.
- The loss function is $L(\theta, \sigma)$:

$$\min_{\theta} \max_{\sigma} \mathcal{L}(\theta) = \underbrace{\mathcal{L}_{\text{original}}(\theta)}_{\text{Data Fitting}} + \underbrace{\mathcal{L}_{\text{worst & orignial}}(\theta, \sigma)}_{\text{Robust Errors}}$$

¹Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta Paternina, "Physics-Constrained Adversarial Training for Neural Networks in Stochastic Power Grids", Artificial Intelligence on Transaction, 2022

- Main idea: Obtain the worst-case perturbation σ constrained by physical laws to train the parameters θ of neural networks without extra training datasets.
- The loss function is $L(\theta, \sigma)$:

¹Wenting Li, Deepjyoti Deka, Ren Wang, Mario Arrieta Paternina, "Physics-Constrained Adversarial Training for Neural Networks in Stochastic Power Grids", Artificial Intelligence on Transaction, 2022

Fig. 14: The IEEE 68-bus benchmark Power Grid with five areas

- IEEE 68-bus system^a through power system toolbox (PST)^b.
- 560 training data with 36 measured buses.
- Natural perturbations are generated when loads vary with δ₁ and control input changes with δ₂.

< □ > < 同 >

^aRogers <u>2012.</u> ^bChow and Cheung <u>1992.</u>

Robustness to Natural Perturbations

Table 3: Location Accuracy Rate (LAR %) when the load vary within δ_1

Type(Method)	δ ₁ = 1	δ_1 =1.5	δ1 =2	δ ₁ =3
Base	96.25	81.61	71.96	57.5
TRADES	95.89	88.21	76.96	66.61
FGSM	90.89	84.46	75.36	62.68
PGD	90.36	80.18	71.25	58.04
TRADES _{regu} (Proposed)	97.86	89.64	81.96	73.39
TRADES _{physics} (Proposed)	98.21	91.96	82.86	74.64

TRADES_{reau} and TRADES_{physics} Improve the LAR³ than existing methods⁴ bv 1% - 17%.

⁴where "Base" denotes the stochastic gradient descent method; "TRADES_{requ}": When the physical regularization is applied. "TRADES_{physics}": when regularization and physical ranges are included; TRadeoff-inspired Adversarial DEfense(TRADES); Fast Sign Gradient Method (FGSM); Projected Gradient Descent (PGD).

³LAR = The number of correctly located events

Central Ideas:

Robustify neural networks for fault location through:

- 1. Designing novel architectures by preserving physics
- 2. Developing physics-constrained optimization for training
- 3. **Certifying** training with physics-informed bound propagation

The State of the Art

Fig. 15: **Verification** is to check whether the region of NNs' outputs (red areas) satisfies some decision boundary and is **intractable**; Interval Bound Propagation (IBP) method is tractable (Gowal et al. 2018)

 IBP can efficiently verify it by propagating the interval bounds (green areas) of the regions.

• • • • • • • • • • •

Our Approach⁵

Fig. 16: The voltage limits propagate; the current limits propagate

• **Tighter bounds of the region with physical ranges**, including the voltage limits, current limits and their correlation.

⁵W. Li, K. Dvijotham, D. Deka, "Physics-Constrained Interval Bound Propagation for Robustness Verifiable Neural Networks in Power Grids", AI for Energy Innovation, 2023

Numerical Results

Table 4: Performance comparison when loads randomly vary within δ_1

Type (Method)	$\delta_1 = 1$	δ_1 =1.5	δ ₁ =2	δ ₁ =3
Base (LAR %)	96.25	81.61	71.96	57.5
IBP (LAR %)	98.93	94.64	84.29	61.43
IBP _{Phy} (LAR %)	99.64	96.61	89.29	64.29
IBP (VR %)	93.93	82.14	69.64	47.5
IBP _{Phy} (VR %)	97.32	90.36	79.46	54.29

- "Base" denotes that no verification training; "IBP" denotes the baseline and "IBP_{Phy}" denotes the proposed method.
- We improve the LAR and VR ⁶ up to 5% and 10% respectively.

Conclusions and Future Works

- The stochastic and dynamical environments in power grids require machine learning algorithms to be robust and interpretable;
- Design a physics-preserved graph network framework for fault location, showing superior performance than the state of the art when data is imperfect (low label rates and noisy);
- Propose a training algorithm with physical constraints to enhance robustness of neural networks in the perturbed environment;
- Create a physics-Informed verification for neural networks in power grids to guarantee the reliability.
- Future works will generalize the art of guiding machine learning with physics for extensive applications, such as stability prediction, state estimation.

(日)

Thank you! Questions?

Job Search for modelers of microgrids and distribution systems

Postdoc:

https://lanl.jobs/search/jobdetails/microgrid-postdoctoral-research-associate/f47f3ac6-7caf-4213-a325-f1ee3b4489e2

Scientist:

https://lanl.jobs/search/jobdetails/microgrid-scientist-scientist-2/b2696055-3997-4a53-a246-147bc4e9f2fe

Email: wenting@lanl.gov

30/30