The Use of High-Speed Synchronized Measurements to Create Dynamic Indicators of Grid Resilience

David Schoenwald and Sam Ojetola
Electric Power Systems Research Department
Sandia National Laboratories
Albuquerque, New Mexico, USA

NASPI Spring Work Group Meeting
Tempe, Arizona

Tuesday, April 4, 2023
What is Missing in Resilience Metrics?

- There are many resilience metrics in use out there.
- However, no consistent studies on the benefits to each metric and when/how to use these metrics.
- Many of these metrics are economic and some are not precisely defined (e.g., subjective) ➔ Takes time and a lot of data (not always available) to calculate these metrics.
- One key lesson learned in recent DOE/GMLC resilience project is that industry wanted to see dynamic resilience indicators – shorter term measures of the grid’s capability to handle major events – potential indicators of tipping points in response to these events.
Resilience Trapezoid

Resilience Phases

<table>
<thead>
<tr>
<th>Pre-Disturbance</th>
<th>Disturbance</th>
<th>Degraded</th>
<th>Recovery</th>
<th>Post recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource Adequacy (Probabilistic Measures)</td>
<td>Generation lost per hour</td>
<td>Cumulative energy not served</td>
<td>Time to Infrastructure recovery</td>
<td>Post event analysis</td>
</tr>
<tr>
<td>Loss of Load Expectation (LOLE)</td>
<td>Transmission lines tripped per hour</td>
<td>Severity Risk Index</td>
<td>Time to operational recovery</td>
<td></td>
</tr>
<tr>
<td>Loss of Load Probability (LOLP)</td>
<td>Load lost per hour</td>
<td></td>
<td>Generation restored per hour</td>
<td></td>
</tr>
<tr>
<td>Effective Load-Carrying Capacity (ELCC)</td>
<td>Dynamic Resilience Indicator</td>
<td></td>
<td>Transmission lines restored per hour</td>
<td></td>
</tr>
<tr>
<td>Expected Unserved Energy (EUE)</td>
<td>Planning Reserve</td>
<td></td>
<td>Load restored per hour</td>
<td></td>
</tr>
</tbody>
</table>
FLEP Metrics – Definitions

<table>
<thead>
<tr>
<th>FLEP Metrics</th>
<th>Description of Metrics</th>
<th>Generation Lost</th>
<th>Transmission Lines Tripped</th>
<th>Load Disconnected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ – Fast</td>
<td>How Fast does resilience drop?</td>
<td>% of MW lost/hour</td>
<td>% of lines tripped/hour</td>
<td>% of MW lost/hour</td>
</tr>
<tr>
<td>Λ – Low</td>
<td>How Low does resilience drop?</td>
<td>% of MW lost</td>
<td>% of lines tripped</td>
<td>% of MW lost</td>
</tr>
<tr>
<td>Ε – Extent</td>
<td>How Extensive is the degraded state?</td>
<td>hours</td>
<td>hours</td>
<td>hours</td>
</tr>
<tr>
<td>Π – Prompt</td>
<td>How Promptly does the system recover?</td>
<td>MW restored/hour</td>
<td>% of lines restored/hour</td>
<td>MW restored/hour</td>
</tr>
</tbody>
</table>

FLEP Metrics – Calculations

<table>
<thead>
<tr>
<th>Metric</th>
<th>Mathematical Expression</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>(\frac{R_0 - R_1}{t_2 - t_1})</td>
<td>MW/hours, No. of lines tripped/hours, No. outages/hours, No. of unserved customers/hours</td>
</tr>
<tr>
<td>Λ</td>
<td>(R_1 - R_0)</td>
<td>MW, No. of Lines tripped, No. of outages, No. of unserved customers</td>
</tr>
<tr>
<td>Ε</td>
<td>(t_3 - t_2)</td>
<td>hours</td>
</tr>
<tr>
<td>Π</td>
<td>(\frac{R_1 - R_0}{t_4 - t_3})</td>
<td>MW/hours, No. of lines restored/hours, No. of restored customers/hours</td>
</tr>
<tr>
<td>Area</td>
<td>(\int_{t_1}^{t_4} R(t) , dt)</td>
<td>MW X hours, No. of lines in service X hours, No. of outages X hours, No. of customers X hours</td>
</tr>
</tbody>
</table>
Severity Risk Index (SRI)

- Daily metric where the generation loss, transmission loss and load loss due to a major event aggregates to a single value that indicates grid resilience.
- SRI can show the best and poorest performance of the grid over a long period of time.
- SRI can also illustrate the trend towards recovery due to a major event.
- Feedback from TRC in NTRR project on SRI:
 - No consistent agreement on weighting of these components.
 - No consistent agreement on how or even if SRI should be used.
Calculating SRI

For long time periods, e.g., days to weeks, SRI is calculated:
(Note: FLEP metrics are inputs to SRI)

Severity Risk Index = SRI = $\beta_1 \times GL + \beta_2 \times TLT + \beta_3 \times LD$

where $GL = \%$ of Generation Lost per hour/day

TLT = $\%$ of Transmission Lines Tripped per hour/day

LD = $\%$ of LoadDisconnected per hour/day

β_1, β_2, and β_3 are weighting indices such that $\beta_1 + \beta_2 + \beta_3 = 1$

Per NERC, $\beta_1 = 0.1$, $\beta_2 = 0.3$, $\beta_3 = 0.6$
Dynamic Resilience Indicator (DRI)

Measure of Reactive Reserves

Measure of Voltage Stability

- For shorter time periods (seconds to minutes to a couple hours)
- Calculated during the disturbance phase
- Can be used to identify precursors to major loss of resilience in grid
- Can be used as a post-event forensic metric
- Can be used as a means to identify where additional investments would be most needed
Calculating DRI

For short time periods (secs to mins to couple hours), data for SRI is unavailable => need dynamic metrics:

Dynamic Resilience Indicator = DRI = \(\alpha_1 \cdot RR + \alpha_2 \cdot LL + \alpha_3 \cdot FA \)

where

- \(RR \) = Measure of Reactive Reserves (e.g., phase angle sep. in p.u. between buses)
- \(LL \) = Loadability Limit in p.u. (e.g., tip of the nose curve => point of maximum load)
- \(FA \) = Measure of Frequency Agility = (e.g., % of Frequency Nadir)

\(\alpha_1, \alpha_2, \) and \(\alpha_3 \) are weighting indices such that \(\alpha_1 + \alpha_2 + \alpha_3 = 1 \)
Measures of Grid Strength

- Grid strength is another potential measure of resilience.
- Grid strength describes stiffness of terminal voltage in response to current injection variations.
- Strong grids \Rightarrow Voltage and angle are relatively insensitive to current injection variations.
- Grid strength is closely related to short circuit current level \Rightarrow The higher the short circuit level, the stronger the grid.
- IBRs provide minimal contribution to short circuit current due to inverter limitations.
- As more IBRs replace synchronous generators \Rightarrow Decrease in short circuit level is expected.
- Therefore:
 - Need to monitor grid strength
 - Identify weak grid conditions
 - Develop mitigation strategies as IBRs proliferate
Weighted Short Circuit Ratio (WSCR)

A metric for grid strength that can be used to measure resilience is the Weighted Short Circuit Ratio (WSCR) defined as:

\[WSCR = \frac{\sum_i^N SCMVA_i \times P_i}{\sum_i^N P_i} \]

where \(SCMVA_i \) is the short-circuit capacity at bus \(i \) without current contribution

\(P_i \) is the MW output of non-synchronous generation to be connected at bus \(i \)

\(N \) is the number total number of non-synchronous generation resources

ERCOT is using this metric to define operational limits for total transmission of power from IBRs across key power system interfaces*.

*NERC, Integrating Inverter-Based Resources into Low Short Circuit Strength Systems, 2017.
Next Steps

- Independent study of current resilience metrics in use: benefits, weaknesses, examples.
- Need to study how SRI, DRI, WSCR can be used to identify areas in the grid that need further investment to improve resilience and what these investments might be.
- Specific grid events should be studied ➔ Wildfire scenarios, extreme drought, polar vortex, etc., with high fidelity models.
- Tie in key infrastructures to the analysis, e.g., natural gas, to determine sensitivity of resilience to disruptions in these interdependencies.
- Engage industry as much as possible!
Acknowledgements

• The speakers gratefully acknowledge the US Department of Energy and the Grid Modernization Laboratory Consortium for their support of this work.

• The speakers also acknowledge the members of the NTRR Technical Review Committee for their advice and assistance in the development of new resilience indices.

Questions?

daschoe@sandia.gov sojetol@sandia.gov