

Engineering Analysis Task Team

Evangelos Farantatos (EPRI) – Co-Lead Matthew Rhodes (SRP) – Co-Lead

NASPI Workgroup Meeting Break-Out April 4-5, 2023

EATT Break Out Agenda

- 3:00-3:15 Introduction to the EATT and Round table introductions
- 3:15-3:45 Special Guest Presentation: The Grid Event Signature Library: A Centralized Repository of Power System Waveform Data - Aaron Wilson (Oak Ridge National Laboratory) and Jhi-Young Joo (Lawrence Livermore National Laboratory)
- 3:45-4:15 Special Guest Presentation: The Use of High-Speed Synchronized Measurements to Create Dynamic Indicators of Grid Resilience
 - David A. Schoenwald (Sandia National Laboratory)
- 4:15-4:25 Edge Computing Survey Results
- 4:25-4:35 Model Validation Paper update?
- 4:35-5:00 What do you want to see for the future of EATT

EATT Mission Statement

- 1. Proliferate the development, testing, and validation of engineering applications and data analytical methods that use synchronized measurements systems.
- 2. Assist in the deployment and utilization of synchronized wide-area measurement applications.
- 3. Formulate and guide recommended R&D activities related to the advancement of wide-area synchronized measurement systems and their applications.

EATT Edge Computing Survey

The EATT has released a survey to develop a beginning understanding of edge computing techniques and how synchrophasor data can contribute to such technologies.

Edge computing definition: Data collected, algorithms calculated, and decisions made at grid edge devices WITHOUT the translation of large amounts of system synchrophasor data to a central location. Local synchrophasor data transfer (say between substations) is considered an edge computing application.

The survey included one question seeking expertise and knowledge on existing or in-development synchrophasor edge computing applications.

Main results demonstrate an underlying challenge to understand the true definition of "grid edge" and the lack of a well-defined category of applications.

EATT Edge Computing Survey Results - Research

Grid Edge Apps

Utilize local frequency measurement data to voluntarily reduce power usage by sending signals to air conditioners.

3 out of the 19 total response were generic synchrophasor responses

Currently we are trying to monitor disturbances and their control using edge computing by using PMU data of adjacent substations.

A Machine Learning (ML) solution deployed in an Internet-of-Things (IoT) edge device for detecting forced oscillations in power grids.

EATT Edge Computing Survey Results - Vendor

Grid Edge Vendor Responses

Grid Edge Apps

GE Phasor Controller hardware and a substation PDC used for intelligent islanding, frequency control and transient instability protection.

7 out of the 14 total response were either no response or were general synchrophasor applications (nongrid edge)

I believe you could classify the application in Mexico (by SEL and CFE) which used the phase angle to determine if there was power flow out of Merida and based on that measurement, modify the relay settings.

Distribution synchrophasors to control usage of a simulated battery to match 15 minute and real time actual renewable PV production in a residential setting.

EATT Edge Computing Survey Results - Utility

Applications reported (in -service or discussed)

Advanced Model Validation & Calibration

- EATT White Paper
- Lead: Honggang Wang (previously with GE)

Objective: Document industry advancements in model validation and calibration

Drafting has been completed

1 Introduction	1
1.1 Motivation for Model Validation & Calibration	1
1.2 Power System Model Validation Overview	3
1.3 State-of-the-Art Toolsets	5
1.3.1 Power Plant Parameter Derivation (PPPD)	7
1.3.2 Power Plant Model Validation Tool (PPMV)	9
1.3.3 Power Plant Model Validation Simscape Design Solution	11
1.3.4 Generator Model Validation (GMV)	12
1.3.5 PhasorAnalytics Dynamic Model Validation & Calibration	14
1.4 Current Limitations	15
2 Advanced Model Validation	17
2.1 Enhanced Model Validation Procedure	17
2.2 Performance Metrics	20
3 Advanced Model Calibration	25
3.1 Advanced Parameter Selection	25
3.1.1 Trajectory Sensitivity Approach	25
3.1.2 Global Sensitivity Approach	26
3.1.3 SVD Based Methods	28
3.1.4 Similarity Based Methods	30
3.1.5 Empirical Gramian Based Method	31
3.2 Advanced Model Parameter Tuning	32
3.2.1 Estimation Based Approach	32
3.2.2 Optimization Based Approach	35
3.2.2.1 Efficient Trust Region Approach	35
3.2.2.2 Black-Box Optimization Based Approach	36
3.2.2.3 Approximate Bayesian Computation Based Approach	38
3.2.3 Machine Learning Based Approach	40
3.2.3.1 Q-Learning Based Approach	40
3.2.3.2 Conditional Variational Autoencoder based Approach	42
3.3 Performance Validation Process and Metrics	45
4 Multiple Event Based Model Validation & Calibration	48
4.1 Motivation for Using Multiple Events	48
4.2 Event Selection	50
4.3 Multiple Event Model Calibration	52
4.3.1 Simultaneous Calibration	52
4.3.2 Sequential Calibration	54
4.3.3 Distributed Calibration	58
5 Conclusions	61

What do you want to see from EATT?

- Synchrophasor Edge Computing White paper Is this of value to the NASPI community?
- IBR Performance Monitoring Analytics and Tools Data, ML analytics and BES impact identifications – Can synchrophasors help and what type of application is needed?
- Other Ideas for EATT products?