

Advanced Measurements for Resilient Integration of Inverter-Based Resources

Jim Follum (PNNL) Alex McEachern (McEachern Laboratories) Jason MacDonald, LBNL Nils Stenvig, ORNL Rob Hovsapian, NREL

April 4, 2023

PNNL-SA-183454

Biden Administration Launches Bipartisan Infrastructure Law Initiative to Connect More Clean Energy to the Grid

MAY 31, 2022

\geq	f	9	in	P
--------	---	---	----	---

Energy.gov » Biden Administration Launches Bipartisan Infrastructure Law Initiative to Connect More Clean Energy to the Grid

The Interconnection Innovation e-Xchange Engages Utilities, Clean Energy Developers, Regulators, and Others to Enable More Clean, Affordable Electricity While Ensuring Grid Reliability, and Resilience

WASHINGTON, D.C. – The Biden Administration through the U.S. Department of Energy (DOE) today launched the Interconnection Innovation e-Xchange (i2X) – a new partnership funded by President Biden's Bipartisan Infrastructure Law that brings together grid operators, utilities, state and tribal governments, clean energy developers, energy justice organizations, and other stakeholders to connect more clean energy to America's power grid by solving challenges facing the power industry. The partnership will help reduce wait times for clean energy sources in interconnection queues and lower costs to connect to the grid. As the Biden Administration ramps up expansion of new renewable energy to reach the President's goal of 100% clean electricity by 2035, i2X partners will develop solutions for faster, simpler, and fairer interconnection of clean energy resources through better data, roadmap development, and technical assistance.

Risk of negative impacts to the bulk power system must be mitigated

Measurements can help mitigate risks

Roadmap for Advanced Power System Measurements

ENERGY Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830

https://doi.org/10.2172/1871292

PROGRESS MATRIX

- Initiated in April 2022
- ► Jointly funded by DOE's Office of Electricity (OE) and Solar Energy Technologies Office (SETO)
- ► Joint effort between PNNL, LBNL, ORNL, and NREL with cost share from McEachern Laboratories
- Objectives:
 - Develop advanced measurement capabilities and analytics
 - Accelerate adoption of IBRs
 - Improve the reliability and resilience of the BPS

es Office (SETO) achern Laboratories

OAK RIDGE National Laboratory

Project Structure

Gap Analysis (PNNL, ORNL, NREL)

- Survey of utility partners' measurement capabilities: BPA, WAPA, KIUC (Kaua'i, Hawaii)
- Review of measurement-based IBR application requirements

GridSweep Instrument (LBNL)

- System probing and waveform measurement with unprecedented precision
- Data collection and processing from two sites

Application Development and Demonstration

- Develop nine measurement-based applications to support integration of IBRs
 - Field demonstration of a synchrophasor-based application

Year 2

Year 1

- Testbed demonstrations of two waveform-based applications
- Release software tools for GridSweep analysis

Gap Analysis

Survey of Utility Measurement Capabilities

Synchrophasors

- Systems are mature and readily accessible
- Information about system limitations is scarce, or at least not readily available to the measurement users

Waveforms

- Accessibility varies widely among Transmission System **Operators** (TSOs)
- Conventional use will continue to dominate (trigger-based) recording)
- Value proposition for highly accessible (e.g., streaming) waveform measurements is not strong enough yet to justify expenses: bandwidth, network management, security, storage
- Labeled event data to support AI/ML is lacking (for now)
- Plant owners are hesitant to share measurements
 - Concerns similar to those surrounding models: IP, liability
 - No requirements to justify expense

Review of IBR Application Requirements

Application Family	Applications	IEEE Std 2800 Compliance	Measurement Type	Measurement Location or RPA	Meas. RRª	TRL		References								
	Inertia Estimation (Transient)	NR ^b	Synchrophasors	Multiple locations in TS	30Hz	8	[^	ehton at al 201			IEEE					
Monitoring	Inertia Estimation (Ambient)	NR	POW GridMetrix Meas.	Multiple locations in TS	kHz (for GridMetrix)	9	[Kimm	Application Family	Applic	cations Std 2800		Measurement Type	Measurement Location or RPA	Meas. RR	TRL	References
		NR	Synchrophasors	Tie lines, SGs, and IBRs	30 Hz	2	[T]		Plant Control		R	POW, Synchrophasors	POI,POM	4 kHz	3-9	[Baker et al., 2021]
	SSO Metering	NR	POW	POI	120 Hz	9	[Cheng et		Fast or F Frequ		R	POW, Synchrophasors	POM	20kHz	5	[NERC, 2020a]
	SSO Source Localization	NR	POW	POI	120 Hz	2			Respo Virtual			POW,				
	Impedance-based Stability Analysis	NR	POW	POI	20kHz	7	[Shah et a	Control	Based	Control	NR	Synchrophasors	POC	3-20kHz	2	[Yap et al., 2019] [Entergy, 2022]
	Harmonic Stability Analysis	R	POW	POM, POI	2.75kHz	5	[Mati [War		Reactive Con		R	POW, Synchrophasors	POI, POM	3-20kHz	3-4	[Brown, 2020] [WECC, 2020]
	Electromagnetic Stability Analysis	R	POW	POI	1Hz-10kHz	5	[ESIG, 2 [NERC,		Automatio Regul	3	R	POW, Synchrophasors	POC and/ POM	3-20kHz	3-4	[Entergy, 2022, Guo et al., 2021]
	Inverter Synchronization Stability Analysis	R	Synchrophasors POW	POM, POC	60Hz, 10kHz	3	[Globa		Ride-th Cont		R	POW, Synchrophasors	POI	3-20kHz	1-3	[Baker et al., 2021] [ESIG, 2020] [Hart et al., 2022]
	Disturbance Monitoring	NR	Synchrophasors, POW, Oscillography	POM,POI,POC	Many kHz	2-9	[NER					Synchrophasors				[Kroposki, 2016], [da Cunha Lima et al., 2021] [Solectria, 2016]
	Power Quality Monitoring	R	POW	POM, POI	8 kHz	7	[Ente		Anti Islanding		R	POW	POI, POM	3-20kHz	3-8	[Nassif et al., 2022] [Haddadi et al., 2021],
Modeling	Data-driven Modeling – Reduced Order Model	NR	Synchrophasors	POI, POM, POC	60 Hz	4		Protection	Line Current Differential Protection with IBRs		R	POW	POC, POI	1kHz	2	[Mills-Price et al., 2011] [Haddadi et al., 2021] [Chowdhury et al., 2022]
	Data-driven Modeling – Impedance	NR	POW	POC	20kHz	2-9			Utility end distance Protection		R	POW	POC, POI	1MHz	2	[Paladhi and Pradhan, 2020] [Nagpal et al., 2020] [Bini, 2022]
	Spectrum Model EMT Model						[AECON		Sequence Current Limiting Protection		R	POW	POM, POI	3-20kHz	2	[Mahamedi et al., 2018]
	Calibration and Validation	NR	POW	POC	20kHz	9	[DOE, 201: [Badrz	Planning	Weak Grid Studies		R	POW, Synchrophasors	POM, POI	Many kHz	2	[Nordgård et al., 2011] [Muljadi, 2016]
	Admittance Model Identification for SSR Screening	NR	POW, Synchrophasors	POM	2kHz	1	Į	ran et al., 2022	p]			·				
	dq Admittance Model Identification	NR	POW	POM, POI	2kHz	3-4	[Fa	an and Miao, 20	20]							

Develop a stronger value proposition for expanding the use of waveform measurements

- Identify cost effective approaches for improving accessibility
 - Synchrophasor-first architectures
 - Automated polling from local storage
 - Distributed solutions
- As barriers to model sharing are addressed, consider plant-level measurements as well

Li, C. (2019). Inverter-Based Resource Monitoring and Event Investigations. Paper presented at the NATF/EPRI/NERC Power System Modeling Conference, Novi, MI.

Recommendations

Recommendations

- Clearly identify the user for proposed applications
 - Who does the value proposition apply to?
 - Do they have access to the necessary measurements?

Recommendations

- Address the need for event records with high-quality labels
 - Show the value of existing signature libraries by using them in your research
 - https://pqmon.epri.com/
 - https://gsl.ornl.gov/
 - If your organization sees potential in AI/ML applications, be strategic in how you store and label event data
 - Develop tools to make labeling and organization easier for these utilities
 - Contribute events to existing libraries

Grid Signature Library (GSL) label: "While attempting to close back in transmission line a fault occurred tripping the breaker at substation."

Recommendations

- Be aware of the measurement system's limitations
 - Environmental conditions
 - Frequency response
 - Calibration
 - Accuracy class
- PNNL report with limitation checklist coming April 2023

GridSweep

- Individual inverters are stable when connected to a strong grid.
- But what happens with [a] an interconnected population of inverters that [b] have diverse PID weights and diverse control loop speeds and are [c] weakly connected to each other?
- Resonance, Damping, and Inertia
 - IBR's are generally worse than rotating generators.
- How much energy required to initiate oscillation?
 - Much less for IBR's than rotating generators...
- Accidental vs Intentional (hostile act) oscillations
 - Intentional requires knowledge of
 - Subsynchronous resonant frequency
 - Subsynchronous phase angle
 - Bulk grid parameters may be covertly visible from outlets.

Credit: commons.WikiMedia.org Tradycyjna, drewniana huśtawka w Viljandi, Estonia.

- Research instrument for subsynchronous resonance risk on grids.
- Probes grid with current: 0.1Hz 40.0 Hz amplitude-modulated 60 Hz.
- Measures voltage response at a different location on the grid.
- Parts-per-billion voltage resolution (100,000 times more precise than the very best meters)

Early stage deployments at Hawaiian Electric, Idaho Power, Dominion Energy, etc.

Dominion Energy - Locks Crew Bldg GridSweep-0010 - 2023-03-02 0:00 UTC to 2023-03-02 23:59 UTC

1-minute Vector Mean with McEachern Filter, 1 min sliding - 1.0Hz~40.0Hz - Full Scale 200ppm of 120V

24

GridSweep graph software v2.1.0 User Interface Rev 1.2.0

DATE AND TIME - LOCAL (UTC-5)

GridSweep graph software v2.1.0 User Interface Rev 1.2.0

- Research in progress now.
- IBR population oscillation risks need to be understood.
- Risk of sub-60-Hz oscillation can be measured via frequency source impedance
- Distribution grid characteristics can be measured from 120V outlets.
 - Real-time Bulk grid parameters may be measurable from 120V outlets...
- Consider this population stability risk in IBR standards?
- Awareness of risk: intentionally-provoked oscillations
 - Population-of-loads vector?
 - Phase related defenses

Derived from original drawing by Paul Ortmann, Idaho Power

Questions?

