Advanced Measurements for Resilient Integration of Inverter-Based Resources

Jim Follum (PNNL)
Alex McEachern (McEachern Laboratories)
Jason MacDonald, LBNL
Nils Stenvig, ORNL
Rob Hovsapian, NREL

April 4, 2023
IBRs are vital to the nation’s clean energy goals
Risk of negative impacts to the bulk power system must be mitigated
Measurements can help mitigate risks
Initiated in April 2022
Jointly funded by DOE's Office of Electricity (OE) and Solar Energy Technologies Office (SETO)
Joint effort between PNNL, LBNL, ORNL, and NREL with cost share from McEachern Laboratories

Objectives:
- Develop advanced measurement capabilities and analytics
- Accelerate adoption of IBRs
- Improve the reliability and resilience of the BPS
Project Structure

Gap Analysis (PNNL, ORNL, NREL)
- Survey of utility partners’ measurement capabilities: BPA, WAPA, KIUC (Kaua‘i, Hawaii)
- Review of measurement-based IBR application requirements

GridSweep Instrument (LBNL)
- System probing and waveform measurement with unprecedented precision
- Data collection and processing from two sites

Application Development and Demonstration
- Develop nine measurement-based applications to support integration of IBRs
 - Field demonstration of a synchrophasor-based application
 - Testbed demonstrations of two waveform-based applications
- Release software tools for GridSweep analysis

Year 1

Year 2
Gap Analysis
Synchrophasors
- Systems are mature and readily accessible
- Information about system limitations is scarce, or at least not readily available to the measurement users

Waveforms
- Accessibility varies widely among Transmission System Operators (TSOs)
- Conventional use will continue to dominate (trigger-based recording)
- Value proposition for highly accessible (e.g., streaming) waveform measurements is not strong enough yet to justify expenses: bandwidth, network management, security, storage
- Labeled event data to support AI/ML is lacking (for now)

Plant owners are hesitant to share measurements
- Concerns similar to those surrounding models: IP, liability
- No requirements to justify expense

Source: NERC
Review of IBR Application Requirements

<table>
<thead>
<tr>
<th>Application Family</th>
<th>Applications</th>
<th>IEEE Std 2009 Compliance</th>
<th>Measurement Type</th>
<th>Measurement Location or RPA</th>
<th>Meas. RR</th>
<th>TRL</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoring</td>
<td>SSO Monitoring</td>
<td>NR</td>
<td>POW</td>
<td>GridMatrix</td>
<td>Multiple locations in TS</td>
<td>10 Hz</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Inertia Estimation (Transient)</td>
<td>NR</td>
<td>Synchrophasors</td>
<td>POW, GridMatrix</td>
<td>Multiple locations in TS</td>
<td>30 Hz</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Inertia Estimation (Ambient)</td>
<td>NR</td>
<td>Synchrophasors</td>
<td>POW</td>
<td>GridMatrix</td>
<td>Multiple locations in TS</td>
<td>120 Hz</td>
</tr>
<tr>
<td></td>
<td>Impedance-based Stability Analysis</td>
<td>NR</td>
<td>Synchrophasors</td>
<td>POW</td>
<td>POI</td>
<td>20 kHz</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Harmonic Stability Analysis</td>
<td>R</td>
<td>POW</td>
<td>POM, POI</td>
<td>2.5 kHz</td>
<td>5</td>
<td>[Yav]</td>
</tr>
<tr>
<td></td>
<td>Electronic Magnetic Stability Analysis</td>
<td>R</td>
<td>Synchrophasors</td>
<td>POW</td>
<td>POI</td>
<td>1 kHz-10 kHz</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Inverter Synchronization Stability Analysis</td>
<td>R</td>
<td>Synchrophasors</td>
<td>POM, POI</td>
<td>60 kHz, 10 kHz</td>
<td>3</td>
<td>[Global]</td>
</tr>
<tr>
<td></td>
<td>Disturbance Monitoring</td>
<td>NR</td>
<td>Synchrophasors, POW, Oscillography</td>
<td>POM, POI, POI, POC</td>
<td>Many kHz</td>
<td>2-9</td>
<td>[NERG]</td>
</tr>
<tr>
<td></td>
<td>Power Quality Monitoring</td>
<td>R</td>
<td>POW</td>
<td>POI</td>
<td>8 kHz</td>
<td>7</td>
<td>[Etra]</td>
</tr>
<tr>
<td>Modeling</td>
<td>Discrete-Time Modeling – Reduced Order Model</td>
<td>NR</td>
<td>Synchrophasors</td>
<td>POI, POM, POC</td>
<td>60 Hz</td>
<td>4</td>
<td>[Fahimi et al., 2012]</td>
</tr>
<tr>
<td></td>
<td>Discrete-Time Modeling – Impedance Spectrum Model</td>
<td>NR</td>
<td>POW</td>
<td>POC</td>
<td>20 kHz</td>
<td>2-9</td>
<td>[Metzger, 2006]</td>
</tr>
<tr>
<td></td>
<td>EM Model Calibration and Validation</td>
<td>NR</td>
<td>POW</td>
<td>POC</td>
<td>20 kHz</td>
<td>9</td>
<td>[Haj-Salem et al., 2006]</td>
</tr>
<tr>
<td></td>
<td>Admittance Model</td>
<td>NR</td>
<td>Synchrophasors</td>
<td>POW</td>
<td>2 kHz</td>
<td>3-4</td>
<td>[Fahimi et al., 2012]</td>
</tr>
<tr>
<td></td>
<td>ts Admittance Model Identification for SSR Screening</td>
<td>NR</td>
<td>POW, Synchrophasors</td>
<td>POM</td>
<td>2 kHz</td>
<td>3-4</td>
<td>[Fahimi et al., 2012]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Application Family</th>
<th>Applications</th>
<th>IEEE Std 2009 Compliance</th>
<th>Measurement Type</th>
<th>Measurement Location or RPA</th>
<th>Meas. RR</th>
<th>TRL</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>Plant Level Control Design</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POI, POM</td>
<td>4 kHz</td>
<td>3-9</td>
<td>[Baker et al., 2021]</td>
</tr>
<tr>
<td></td>
<td>Fall of Primary Frequency Response</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POM</td>
<td>20 kHz</td>
<td>5</td>
<td>[NERC, 2017]</td>
</tr>
<tr>
<td></td>
<td>Virtual Inertia Based Control</td>
<td>NR</td>
<td>POW, Synchrophasors</td>
<td>POM, POI</td>
<td>20 kHz</td>
<td>7</td>
<td>[Shah et al., 2010]</td>
</tr>
<tr>
<td></td>
<td>Reactive Power Control</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POM, POI</td>
<td>3-20 kHz</td>
<td>3-4</td>
<td>[Energy, 2012]</td>
</tr>
<tr>
<td></td>
<td>Automatic Voltage Regulation</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POC and POI</td>
<td>3-20 kHz</td>
<td>3-4</td>
<td>[Energy, 2022, Guo et al., 2021]</td>
</tr>
<tr>
<td></td>
<td>Ride-through Controls</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POI</td>
<td>3-20 kHz</td>
<td>3-4</td>
<td>[Baker et al., 2021]</td>
</tr>
<tr>
<td></td>
<td>Anti Islanding</td>
<td>R</td>
<td>Synchrophasors</td>
<td>POI, POM</td>
<td>3-20 kHz</td>
<td>3-4</td>
<td>[Kropek, 2014]</td>
</tr>
<tr>
<td></td>
<td>Line Current Differential Protection with IBRs</td>
<td>R</td>
<td>POW</td>
<td>POI</td>
<td>1 kHz</td>
<td>2</td>
<td>[Haddad et al., 2012]</td>
</tr>
<tr>
<td></td>
<td>Utility and Distance Protection</td>
<td>R</td>
<td>POW</td>
<td>POI</td>
<td>1 kHz</td>
<td>2</td>
<td>[Haddad et al., 2012]</td>
</tr>
<tr>
<td></td>
<td>Sequence Current Limiting Protection</td>
<td>R</td>
<td>POW</td>
<td>POI</td>
<td>3-20 kHz</td>
<td>2</td>
<td>[Mahmoudi et al., 2012]</td>
</tr>
<tr>
<td>Planning</td>
<td>Weak Grid Stresses</td>
<td>R</td>
<td>POW, Synchrophasors</td>
<td>POM, POI</td>
<td>Many kHz</td>
<td>2</td>
<td>[Najafi et al., 2018]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
- [Baker et al., 2021]
- [NERC, 2017]
- [Energy, 2012]
- [Kropek, 2014]
Develop a stronger value proposition for expanding the use of waveform measurements

- Identify cost effective approaches for improving accessibility
 - Synchrophasor-first architectures
 - Automated polling from local storage
 - Distributed solutions

- As barriers to model sharing are addressed, consider plant-level measurements as well

Clearly identify the user for proposed applications

- Who does the value proposition apply to?
- Do they have access to the necessary measurements?
Recommendations

- Address the need for event records with high-quality labels
 - Show the value of existing signature libraries by using them in your research
 - https://pqmon.epri.com/
 - https://gsl.ornl.gov/
 - If your organization sees potential in AI/ML applications, be strategic in how you store and label event data
 - Develop tools to make labeling and organization easier for these utilities
 - Contribute events to existing libraries

Grid Signature Library (GSL) label:
“While attempting to close back in transmission line a fault occurred tripping the breaker at substation.”
Be aware of the measurement system’s limitations
- Environmental conditions
- Frequency response
- Calibration
- Accuracy class

PNNL report with limitation checklist coming April 2023
GridSweep
Individual inverters are stable when connected to a strong grid. But what happens with [a] an interconnected population of inverters that [b] have diverse PID weights and diverse control loop speeds and are [c] weakly connected to each other?

- Resonance, Damping, and Inertia
 - IBR’s are generally worse than rotating generators.
- How much energy required to initiate oscillation?
 - Much less for IBR’s than rotating generators…
- Accidental vs Intentional (hostile act) oscillations
 - Intentional requires knowledge of
 - Subsynchronous resonant frequency
 - Subsynchronous phase angle
 - Bulk grid parameters may be covertly visible from outlets.
Research instrument for **subsynchronous resonance risk** on grids.

- Probes grid with current: 0.1Hz – 40.0 Hz amplitude-modulated 60 Hz.
- Measures voltage response at a different location on the grid.
- Parts-per-billion voltage resolution (100,000 times more precise than the very best meters)

New DOE GridSweep® Instrument

Early stage deployments at Hawaiian Electric, Idaho Power, Dominion Energy, etc.
GridSweep probing signal
Broad spectrum AM noise columns: probably voltage steps?

Background silence?

Workday signals?
Research in progress now.

IBR population oscillation risks need to be understood.

Risk of sub-60-Hz oscillation can be measured via frequency source impedance.

Distribution grid characteristics can be measured from 120V outlets.
- Real-time Bulk grid parameters may be measurable from 120V outlets...

Consider this population stability risk in IBR standards?

Awareness of risk: intentionally-provoked oscillations
- Population-of-loads vector?
- Phase related defenses
Questions?