

Mani V. Venkatasubramanian

Director, Energy Systems Innovation Center Washington State University Pullman WA

- Rough zone operation of certain hydro units (Francis turbines)
- Mechanical control failures (valves)
- Power electronics control issues (wind,solar,HVDC)
- Poor or incorrect designs (operation outside design range)
- Problematic loads: arc furnaces, oil refineries

- <u>Signature</u>: Sudden appearance and end of oscillations (not related to grid events)
- <u>Mechanism</u>: Root cause external to power grid operations
- <u>Warning signs</u>: Not much. Problem tends to repeat itself until corrected.
- <u>Challenge:</u> Effects are local usually. Can lead to wide-area oscillations sometimes from interarea resonance.

Resonance effect high when:

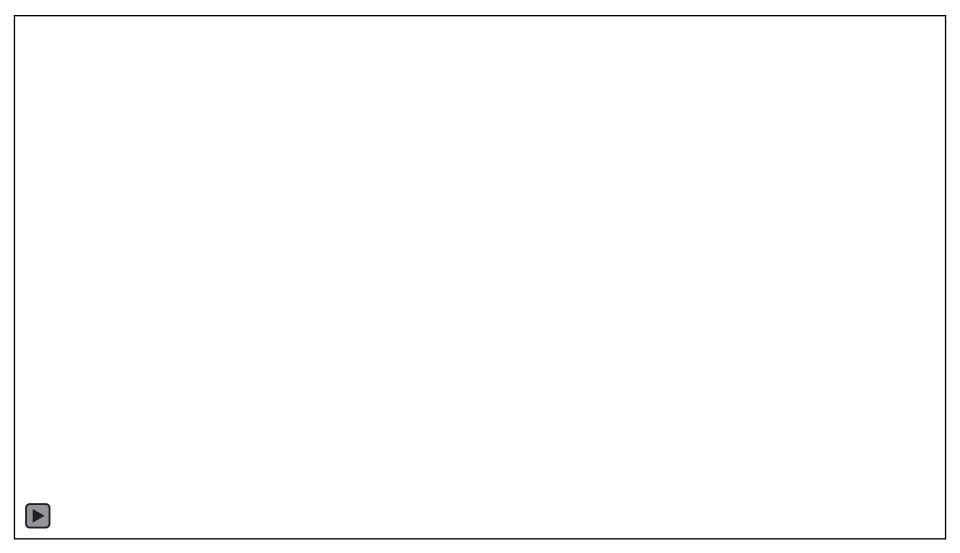
- (R1) Forced Osc freq near System Mode freq
- (R2) System Mode poorly damped
- (R3) Forced Oscillation location near distant ends (strong participation) of the System Mode
- Resonance effect medium when:
- Some of the conditions hold

Resonance effect small when:

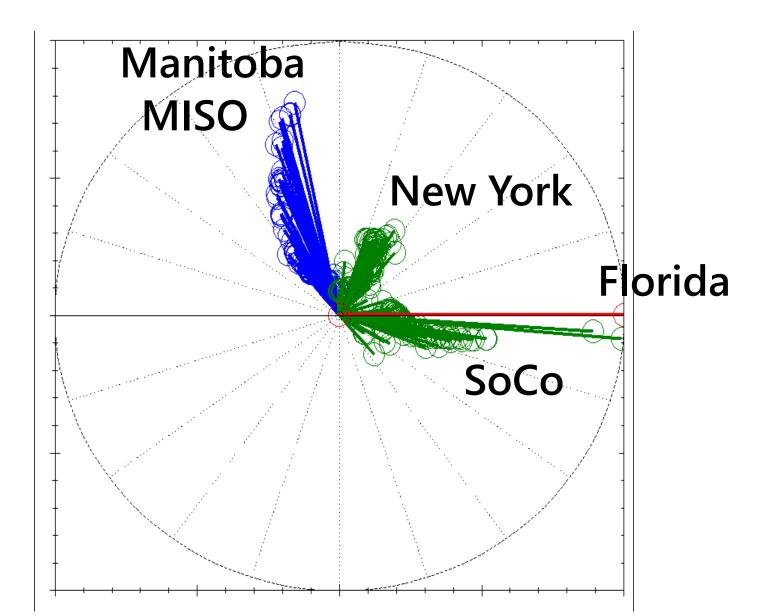
None of the condition holds

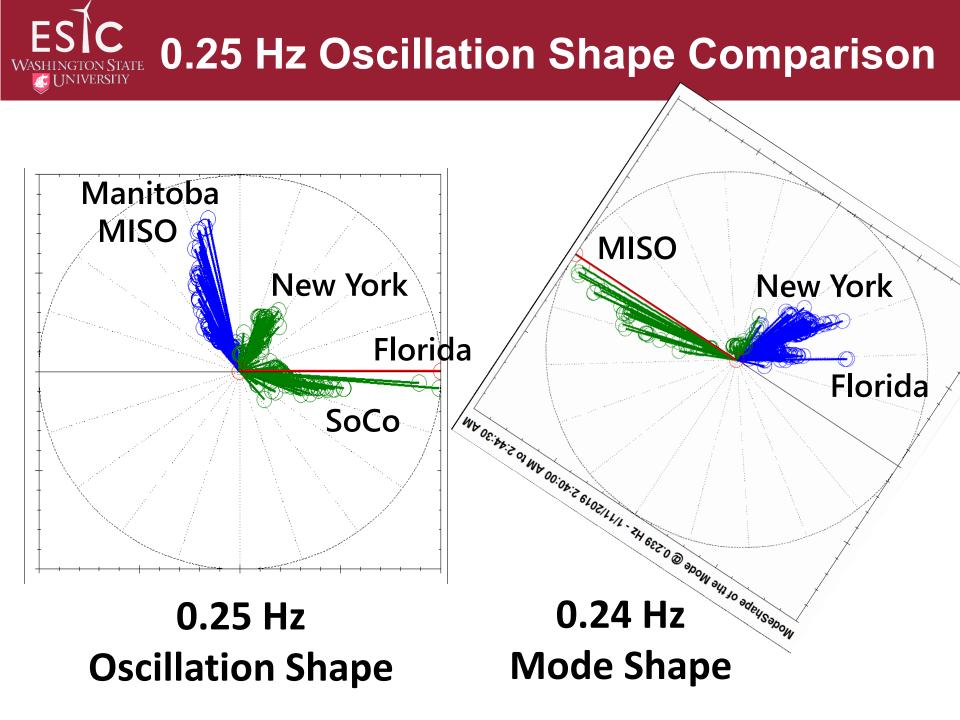
S.A.N. Sarmadi and V. Venkatasubramanian, "Inter-Area Resonance in Power Systems From Forced Oscillations," *IEEE Trans. Power Systems*, vol.31, no.1, pp.378-386, Jan. 2016.

Jan 11, 2019 Eastern System Event



0.25 Hz Oscillation Shape





$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{b}u, \ u(t) = H\cos(\omega t + \gamma)$$

Sinusoidal steady state:

$$\begin{aligned} \boldsymbol{x}_{i}(t) &= A_{FR_{i}} \cos\left(\omega t + \boldsymbol{\Psi}_{FR_{i}}\right) \\ \mathbf{A}_{FR} \boldsymbol{\angle} \mathbf{\Psi}_{FR} &= -(H \boldsymbol{\angle} \boldsymbol{\gamma}) \left(\sum_{i=1}^{2n_{c}} \tilde{\mathbf{v}}_{i} \frac{|\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}|}{\sqrt{\alpha_{i}^{2} + (\omega - \beta_{i})^{2}}} [\boldsymbol{\angle} (\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}) + \boldsymbol{\angle} (\alpha_{i} + j(\omega - \beta_{i}))] \\ &+ \sum_{i=2n_{c}+1}^{n} \tilde{\mathbf{v}}_{i} \frac{|\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}|}{\sqrt{\lambda_{i}^{2} + \omega^{2}}} [\boldsymbol{\angle} (\tilde{\mathbf{w}}_{i}^{\mathrm{T}} \mathbf{b}) + \boldsymbol{\angle} (\lambda_{i} + j\omega)] \right) \end{aligned}$$

Y. Zhi and V. Venkatasubramanian, "Interaction of Forced Oscillation With Multiple System Modes," *IEEE Trans. Power Systems*, vol. 36, no. 1, pp. 518-520, Jan. 2021.

Oscillation shape is a weighted sum of mode shapes from all system modes.

Each mode $\alpha_i + j\beta_i$ contributes its mode shape $\tilde{\mathbf{v}}_i$ multiplied by amplification factor A_i and shifted by rotation factor ψ_i

$$A_i = -\frac{|\tilde{\mathbf{w}}_i^{\mathrm{T}}\mathbf{b}|}{\sqrt{\alpha_i^2 + (\omega - \beta_i)^2}}$$

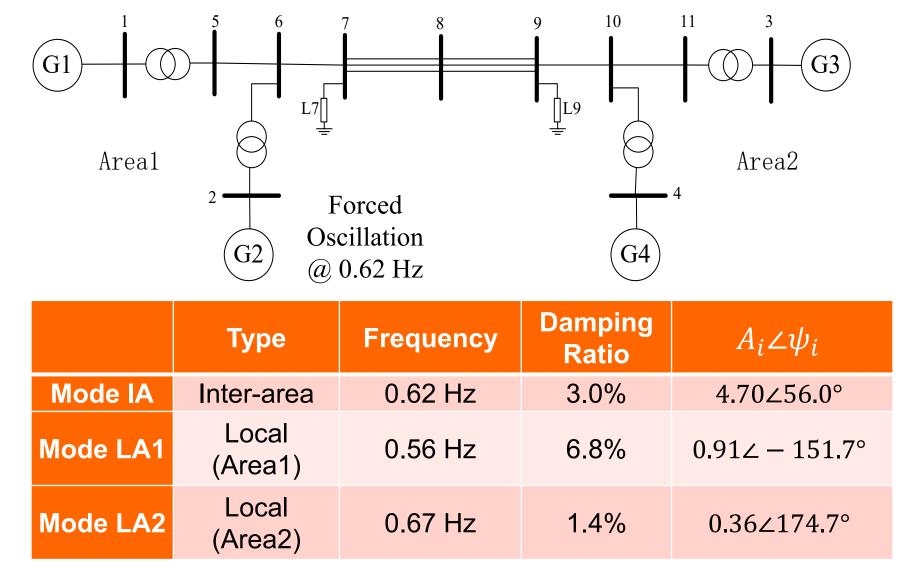
Modal Amplification Factors

$$|A_i| = \frac{|\tilde{\mathbf{w}}_i^{\mathrm{T}} \mathbf{b}|}{\sqrt{\alpha_i^2 + (\omega - \beta_i)^2}} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{-}{\longrightarrow} \qquad \stackrel{+}{\longrightarrow} \qquad \stackrel{+$$

- $\widetilde{\mathbf{w}}_{i}^{\mathrm{T}}\mathbf{b} \Rightarrow \text{Strong controllability (R3)}$ • $\omega \approx \beta_{i} \Rightarrow \text{Close frequencies (R1)}$
- $\alpha_i \text{ small} \Rightarrow \text{Poor damping (R2)}$

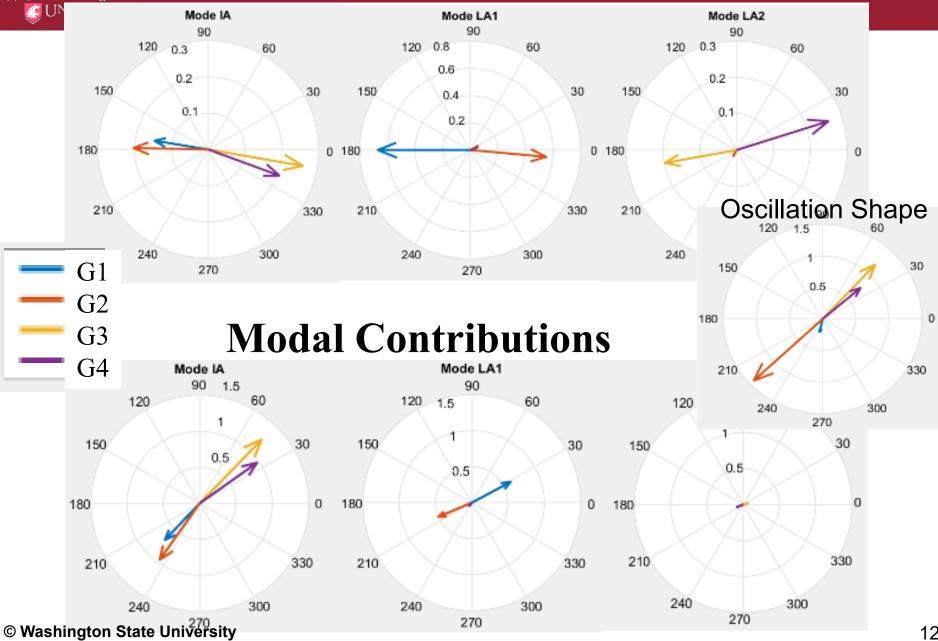
Y. Zhi and V. Venkatasubramanian, "Interaction of Forced Oscillation With Multiple System Modes," *IEEE Trans. Power Systems*, vol.36, no.1, pp.518-520, Jan. 2021.

Kundur System Example

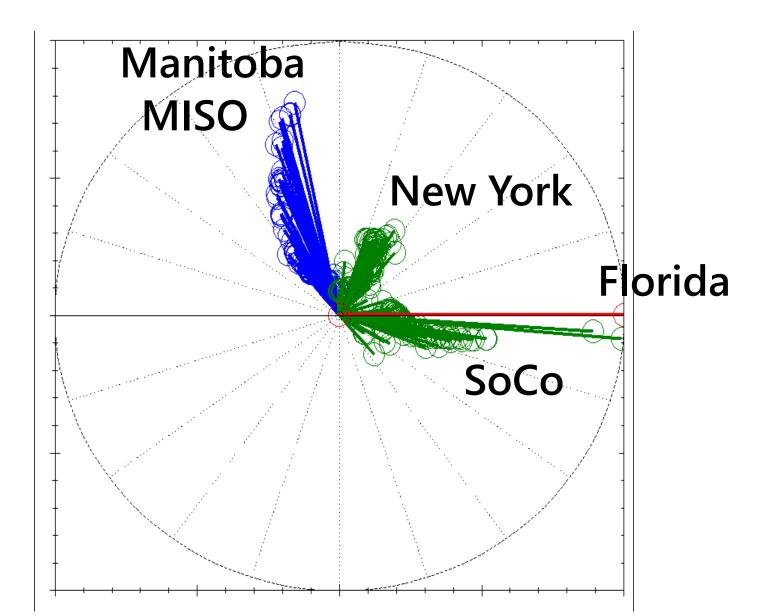


🙆 I INIVERSITY

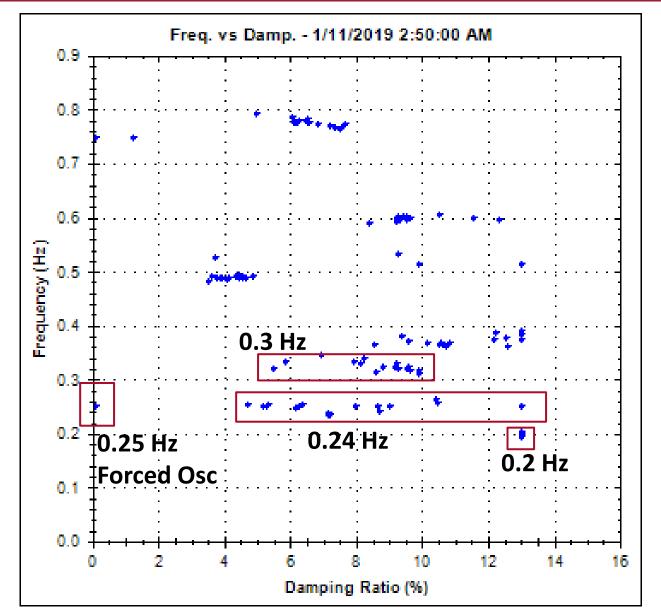
Mode shapes



0.25 Hz Oscillation Shape



FSSI Analysis During Event

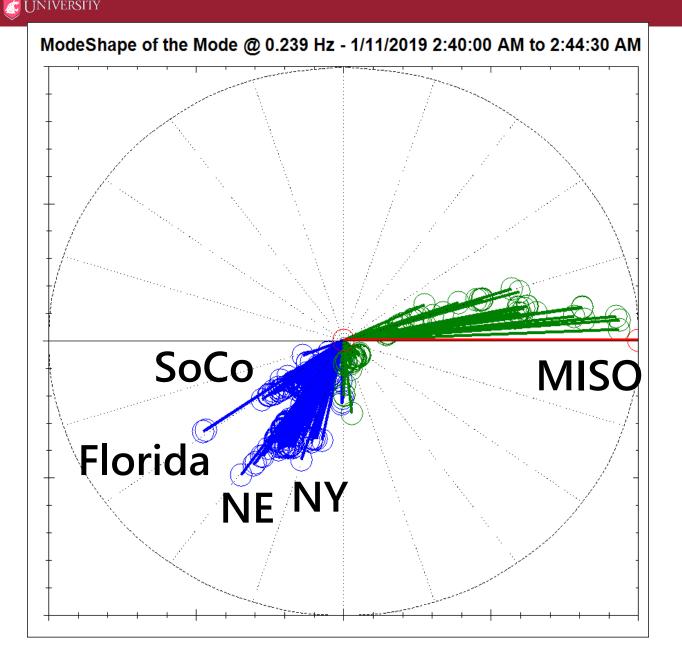


FSSI Analysis. 442 signals.

0.24 Hz mode excited by 0.25 Hz forced oscillation.

0.24 Hz and 0.3 Hz active. 0.2 Hz inactive.

ESIC 0.24 Hz NE-NW-SE Mode Shape



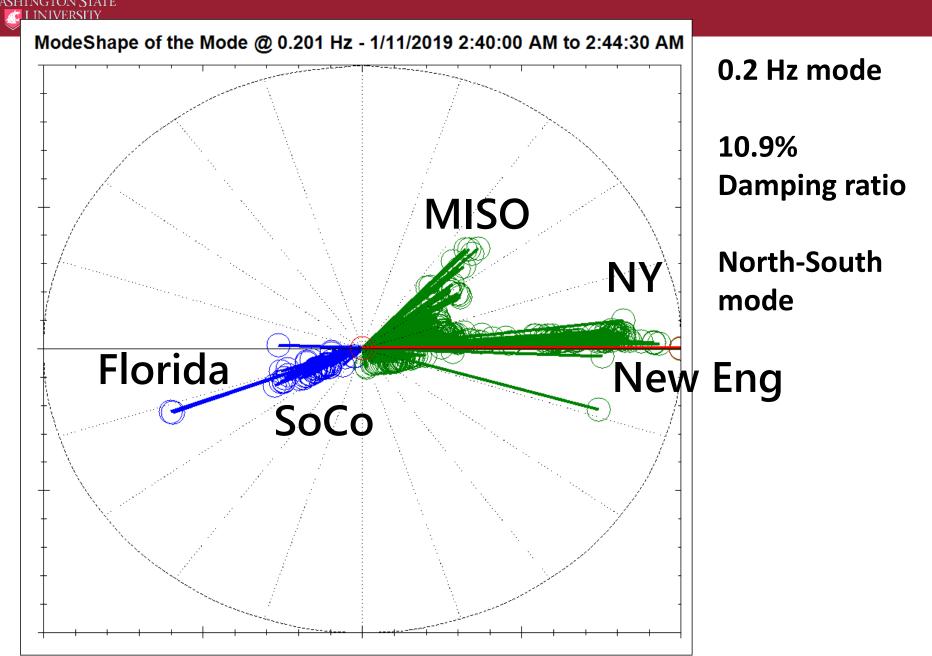
0.24 Hz mode

10.1% Damping ratio

NE-NW-SE mode

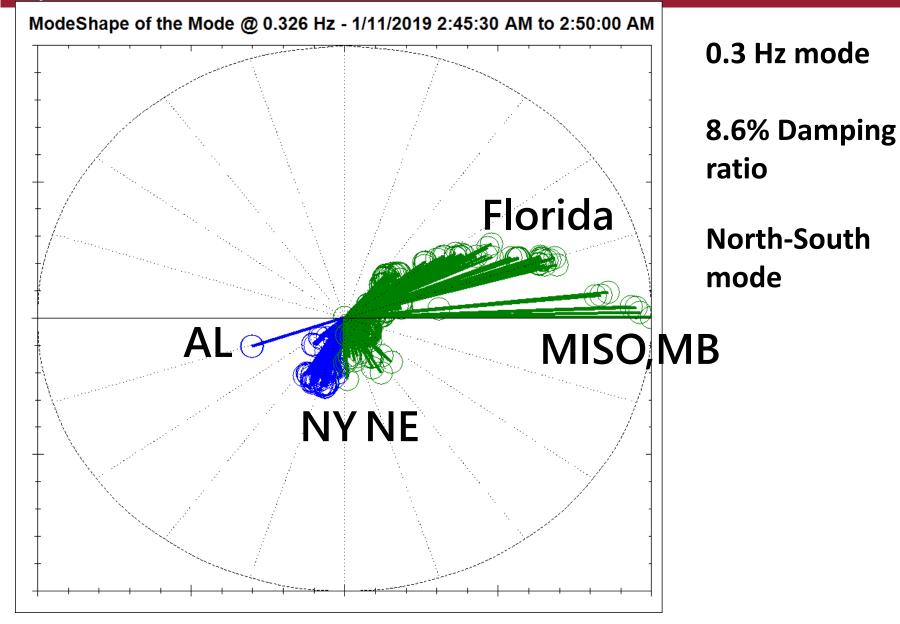
0.2 Hz N-S Mode Shape

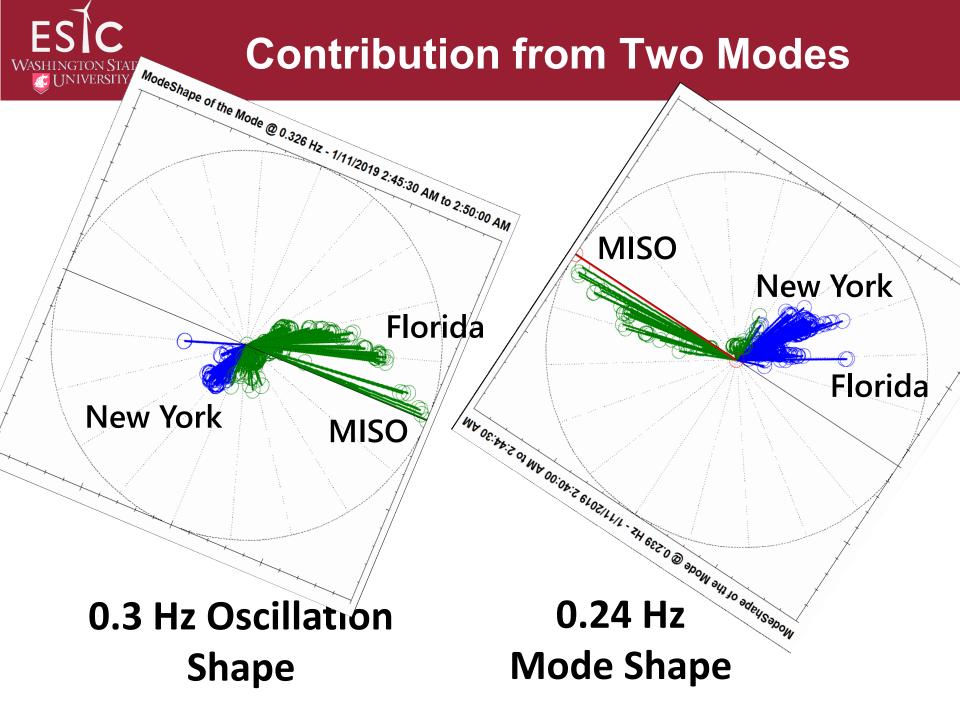
FSIC



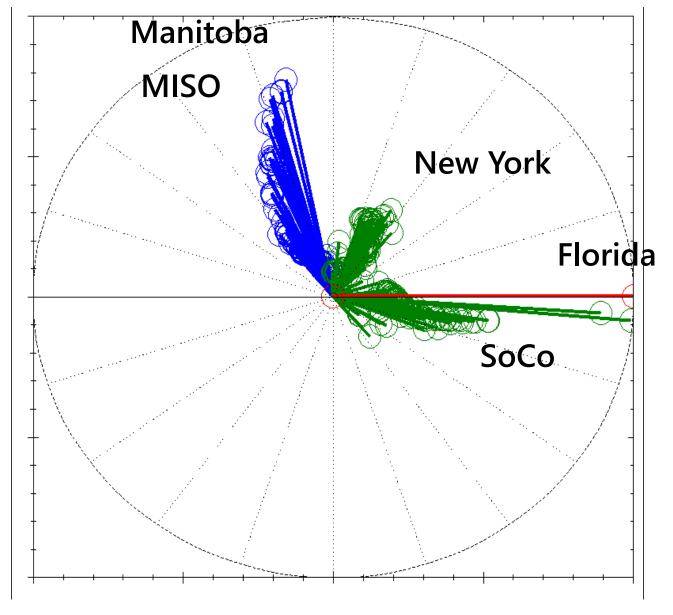
ESIC WASHINGTON STATE

0.3 Hz Mode Shape





0.25 Hz Oscillation Shape



Oscillation Response is the net effect from 0.24 Hz and 0.3 Hz modes.

- Several modes may get excited. What we see is the net effect.
- Mode shapes of dominant modes known => We can estimate modal amplifications of system modes from analysis of PMU measurements.
- Resonance effect from each mode can be estimated by LSE formulation.
- Counteractions and controls.