

PMU DATA QUALITY **MONITORING AT SPP**

PRESENTER: MIKE NUGENT

Helping our members work together to keep the lights on... today and in the future.

AGENDA

- Data Quality/Availability Challenges
- SPP's PMU System
- PMU System Monitoring
- PMU Data Quality Monitoring
- What's Next

DATA QUALITY CHALLENGES

- Data quality and availability is highly variable. Affected by equipment failures, communications issues, scheduled maintenance, etc..
- Easy to miss when data has gone bad. Most downstream analytics are set up to ignore bad data.
- Often don't notice data is bad or missing until that data is needed for after-the-fact analysis
- Current system requires someone to be engaged in looking at reports and dashboards to identify potential data quality issues

PMU SYSTEM OVERVIEW

- SPP recently moved from a single-site architecture to a highly-available dual-site architecture
- SPP's PMU system is built in a corporate environment outside of the ESP
- SPP uses a mix of open-source and vendor-provided tools:
 - PDC: GPA SIEGate
 - Historian: GPA openHistorian
 - 1 year full-resolution archive
 - Analytics: EPG RTDMS
 - 90 day archive
 - Operator UI: EPG RTDMS

Electric Power Group

HIGHLY AVAILABLE PMU ARCHITECTURE

DATA FLOW MONITORING

- SPP uses measurement volume metric data from SIEGate to monitor and alert for inbound data outages using Grafana.
- Support staff receive automated emails and can begin troubleshooting quickly, depending on criticality
- SPP also monitors PMU devices that are used to calculate mode shapes in the Western Interconnect

PMU SYSTEM DASHBOARDS

- SPP uses Windows Performance Counter data to monitor data flow across the PMU system
- Monitoring metrics such as:
 - Network traffic on SIEGate servers
 - Disk I/O on Historian servers
 - Network I/O on RTDMS
 Database servers

DATA QUALITY DASHBOARDS

- SPP uses metric data from SIEGate and RTDMS for data quality dashboards
- Monitoring metrics such as:
 - Device-level % of "good" measurements based on PMU quality flags
 - Data completeness
 - Latency of inbound data

SIEGate Measurement Quality						 Last 1 hour
Time			Good 🔨	Quality Errors	Time Errors	Device Errors
2022-09-20 21:41:22		7	0%	0	0	0
2022-09-20 21:41:22	10004000000	7	0%	0	0	0
2022-09-20 21:41:22	*******	7	46%	0	0	0
2022-09-20 21:41:22	An other last	19	63%	0	0	0
2022-09-20 21:41:22	AND DATE OF THE OWNER.	15	80%	0	0	0
2022-09-20 21:41:22	10.100004.00	6	83%	0	0	0
2022-09-20 21:41:22	14,1,00000,00	6	100%	0	0	0
2022 02 20 21 41 22			100%	0	0	0

RTDMS Measurement Quality \sim						
РМИ	QualityErrors		TimeErrors		Good A	
2000.00	98.0%	0.0%	0.0%	2.0%	0.0%	
N 10 10 10 10 10 10 10 10 10 10 10 10 10	98.0%	0.0%	0.0%	2.0%	0.0%	
#1008409449000	98.0%	0.0%	0.0%	2.0%	0.0%	
4000440440400	98.0%	0.0%	0.0%	2.0%	0.0%	
*****P	2.6%	0.0%	0.0%	15.1%	82.3%	
In constant	9.8%	0.0%	0.0%	2.0%	88.2%	
P100_0100_00	0.6%	0.0%	0.0%	2.0%	97.4%	

DATA MONITORING BACKEND

- Statistics from SIEGate are written into InfluxDB using a GPAprovided output adaptor
- Windows performance counters are gathered from various servers and written to InfluxDB using custom code
- Grafana dashboards are built using native InfluxDB and SQL Server datasources
- Technologies used:
 - Grafana open-source dashboarding software supporting multiple data sources
 - InfluxDB open-source time series database
 - Ostperfmon custom-developed agent that collects Performance Monitor metrics from remote servers and writes them to InfluxDB
 - SQL Server queries to extract metric data from RTDMS database

EMAILED REPORTS

- SIEGate creates a daily PDF-formatted report that is emailed to support staff
 - These reports are nice in that they show recent trends of data completeness
- RTDMS/Gridsmarts sends a daily report for specific Western Interconnect PMU devices.
- Both of these reports are reviewed on a daily/regular basis by support staff.

5-day Device Data Completeness

	09/15	09/16	09/17	09/18	09/19
L4: Good	248	243	250	251	252
L3: Fair	3	8	8	4	4
L2: Poor	3	13	6	8	7
L1: Offline	14	4	4	5	5
L0: Failed	6	6	6	6	6
Total	274	274	274	274	274

WHAT'S NEXT

- Refine processes to triage data quality issues:
 - When is it an issue?
 - What is the criticality?
 - Who should be notified?
- Enhanced and intelligent data quality alerting. Alert support staff when:
 - Large blocks of data are bad
 - Data has been bad for an extended period of time (avoid duplicate alerts)
 - Inbound latency is causing data to drop
- Move away from manual data quality reviews

QUESTIONS?

Mike Nugent Lead Engineer – SPP Market Operations Support mnugent@spp.org

