Digital Twins for Distribution Transformers and Overhead Conductors to Improve Quality of Service Under Faults and Fire Risk

Panayiotis (Panos) Moutis

Special Faculty, Carnegie Mellon University

NASPI WG meeting – Oct. 19th, 2022

Introductions

• What keeps me up at night?

Wide integration & *seamless* operation of (volatile) renewables in electrical grids

• How do I make what I care about possible?

Control, system modeling, optimization, heuristic methods (AI & ML), standards

• Who am I working with?

X, REN, Dept. of Energy, NYISO, Duquesne, Depsys, VT-IoT, Xeal, IEEE, IET, NASPI

Carnegie Mellon University Scott Institute for Energy Innovation

the advice on 2/34 this work, NASPI!

Outline

- Introduction: Motivation for Active Distribution Networks
- Part 1:

Digital Twin of Distribution Transformer

• Part 2:

Wildfire detection with the Digital Twin of Overhead Conductor

• Conclusion & Path Forward

The Electrical Grid is *not* OK...

Panayiotis (Panos) Moutis @PMoutis

"#Electricity customers in the US have not been suffering service disruptions, but for some local rolling #blackouts in CA & TX under extreme conditions" #energy #infrastructure

10:29 AM · Oct 16, 2021 · Twitter Web App

What is wrong with the grid?

- Designed to operate under (some) faulty conditions

 (Some) Faults go unnoticed until additional faults pile up
- Poor equipment maintenance and vegetation (surroundings) control

 Reasons for faults left unchecked
- No digital models, poor monitoring & automation (TX rolling blackouts...)
- Renewables arbitrarily installed & passively operated
- Not properly restructured business

Much of the grid built per the "fit & forget" or "fail gracefully" strategies...

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 5/34 this work, NASPI!

So we need active distribution grids... What does the industry think about that?

for Energy Innovation

Power & Energy Society

6/34 this work, NASPI!

Digital Twin of Distribution Transformer

Real Time Fault and Power Quality Monitoring

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 7/34 this work, NASPI!

Some necessary background – Grid Design

- AC power travels long with fewer losses at higher voltage
- Most typical devices, motors and generators barely operate at medium voltage (size, protection, etc)

Some necessary background – Transformer Vector Groups & Grounding

- Transformers (T/F) increase/decrease voltage levels by inducting power between a shorter coil (low side) and a longer coil (high side)
- 1-phase is simple, but 3-phase T/F is not:

1-phase T/F = 1 coil on each T/F side (high & low)
3-phase T/F = 3 coils on each T/F side
3 coils/phases can be connected either in star or delta
The two 3-coiled T/F sides can change voltage phase
Star connection has a neutral that *could* be grounded

Thanks for all the advice on 9/34 this work, NASPI!

Distribution grid design with transformers

- Some 3-phase transformers (T/F) vector groups can operate at reduced capacity with one phase of one side at fault
- From circuit theory, a Delta-Star T/F with ungrounded neutral will not propagate line-ground (LG) and LLG faults from Delta to Star side
- A preferred Medium Voltage (MV) and LV architecture for distribution

Can we capture faults in distribution grids in real time?

- The idea of the digital twin of a distribution T/F
- The value of distribution T/F digital twin:

Low voltage (LV) is directly monitored
MV is estimated

- o Possibly monitor other concerns?
- Minimum disruption compared to other methods

Defining the digital twin of a single-phase distribution transformer (T/F)

- (a) > (b) > (c) T/F circuits by order of detail
- Preferring (b) circuit

$$u_{2}(t) = u'_{1}(t) + R_{S}i'_{1}(t) + L_{S}\frac{di'_{1}(t)}{dt}$$
$$i_{2}(t) = \frac{u_{2}(t)}{R_{M}} + \frac{1}{L_{M}}\int u_{2}(t) dt + i'_{1}(t)$$

$$u_{2}[n] = u'_{1}[n] + R_{s}i'_{1}[n] + L_{s}(i'_{1}[n] - i'_{1}[n-1])f_{s}$$
$$i_{2}[n] = \frac{u_{2}[n]}{R_{M}} + \frac{u_{2}[n] - u_{2}[n-1]}{L_{M} \cdot f_{s}} + i'_{1}[n]$$

12/34

Carnegie Mellon University Scott Institute for Energy Innovation For energy Society*

Extending to the digital twin of 3-phase distribution transformers

Testing the transformer (T/F) digital twin (1/2)

• Medium Voltage (MV) digital twin with comparable accuracy to instrument T/F under non-transient conditions:

Power & Energy Society

Carnegie Mellon University

for Energy Innovation

Scott Institute

Testing the transformer (T/F) digital twin (2/2)

- Monitoring power quality what are harmonics?
- The T/F circuit as a low-pass voltage filter

Thanks for all

the advice on

this work, NASPI!

15/34

 There is no significant loss of accuracy between T/F and its digital twin for voltage harmonics

Carnegie Mellon University Scott Institute for Energy Innovation

NASPI

Publications & Funding

• Moutis P, Mousavi O. (2020). Digital Twin of Distribution Power Transformer for Real-Time Monitoring of Medium Voltage from Low Voltage Measurements. IEEE Transactions on Power Delivery (IEEE).

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 16/34 this work, NASPI!

Wildfire detection for non-preemptive disconnection of overhead lines

And keeping the lights on, under challenging circumstances...

Thanks for all the advice on 17/34 this work, NASPI!

Electricity stakeholders' role & response to fires

UTILITY DIVE Deep Dive Opinion Podcasts Library Events

Grid Reliability Electrification Load Management Renewables Generation T&D

DEEP DIVE

Wildfires pushed PG&E into bankruptcy. Should other utilities be worried?

Catastrophic wildfires, which can lead to billions of dollars in damages, present a unique financial risk that the utility sector will want to get ahead of, experts say.

Published Nov. 19, 2020

Carnegie Mellon University Scott Institute for Energy Innovation

CON BUSINESS

wildfires

By Rob McLean and Chris Isidore, CNN Business Iblished 4:48 AM EST, Tue January 29, 2019

Markets Tech Media Success Perspectives Videos

PG&E files for bankruptcy after California

Thanks for all 18/34 the advice on this work, NASPI!

Some Necessary Definitions – Active Power

• Energy (E) & Active Power (P)

• Whatever moves, heats & charges • $P = \frac{\partial E}{\partial t}$

• Voltage Phase Angle (**3**)

• Measure of active power flow over a mostly inductive line (transmission)

More Necessary Definitions – Reactive Power

- Why does voltage drop and, thus, causes concerns about its levels? • Ohm's law of drop of voltage over an impedance run by current
- I.e. because we transmit power over lines...

 \circ Transmission line reactance much greater than resistance \circ Resistance → line losses in *P*, Reactance → line losses in reactive power *Q*

• Voltage magnitude (|V|)

o Its drop caused mostly by the line induction (transmission)

The value of synchronized, real-time measurement of electrical grid operation

- Devices capturing the time-varying signals of voltage & current
- Named "*Phasor* MU" because they determine the phase angle of signals
- Simplified description of a PMU: 'repurposed oscilloscope'
- Standardized equipment (e.g. IEEE Std C37.118.1 new update coming)

Non-preemptive disconnection of lines – Idea

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 22/34 this work, NASPI!

Impedance of a conductor

• Impedance includes resistance (affected by temperature) & reactance

 $Z(T_c) = R(T_c) + jX = |Z(T_c)| cos\delta(T_c) + j|Z(T_c)| sin\delta(T_c)$

Relationship of Resistance to Ambient Temperature

- Particularly complicated
- But standardized

*RI*² effect of line loading per se
 q_s effect from solar irradiation
 q_c exchange of heat load with surroundings

- $\circ q_r$ radiated heat loss
- $\circ T_a$ ambient temperature

$$R(T_{\rm c}) = R_{ref} \cdot \left[1 + \alpha \left(T_c - T_{c,ref}\right)\right]$$

$$\frac{dT_c}{dt_T} = \frac{1}{m \cdot C_p} \left[R(T_c) \cdot I^2 + q_s - q_c(V_w, T_s, T_a,) - q_r(T_s, T_a) \right]$$

24/34

Effect of fire to ambient temperature

- Non-trivial relationship Looking for assistance/expertise! (contact me)
- Function of fuel of fire, distance from a point of measurement and duration of the fire at a given intensity
- For a moss pine forest with several trees

$t_{F}(s)$	<i>d</i> (m)	ΔT_a (°K or °C)	$t_{F}(s)$	<i>d</i> (m)	ΔT_a (°K or °C)
10		8.23·10 ⁻⁵	10		30.99
30	50	$1.42 \cdot 10^{-4}$	30	5	53.69
60		2.02.10-4	60		75.93
10		5.81	10		71.61
30	10	10.06	30	1	124.03
60		14.23	60		175.40

TEMPERATURE CHANGE AT DISTANCE d from an Overhead Line for Heating Time t_F

Thanks for all the advice on 25/34 this work, NASPI!

Method of detecting approaching forest fire through line impedance

 $Z(T_c) = R(T_c) + jX = |Z(T_c)| cos\delta(T_c) + j|Z(T_c)| sin\delta(T_c)$

• $tan(\delta)$ may be estimated from electrical measurements as:

$$tan\delta = \frac{P_R V_S sin\theta + Q_R V_S cos\theta - Q_R V_R}{P_R V_S cos\theta - Q_R V_S sin\theta - P_R V_R}$$

Thanks for all the advice on 26/34 this work, NASPI!

How should the method operate – and not...

Extensive statistical testing to assess

- 1. Distances of the fire seat from the overhead line of at most 50m, burning for at least 10s, which, as of Table, corresponds to ΔT_a between 0-225.5 °C (including no fire),
- 2. Ambient temperature T_a ahead of the effect of the fire between 10-40 °C,
- 3. Wind speed V_w between 0-6.5 m/s,
- 4. Conductor surface temperature T_s between 10-100 °C,
- 5. Lengths of part *S*-*R* of the line up to 20km,
- 6. Line current up to 1600 Amps (considering also step load increase or decrease),
- 7. Reactive power compensation with switching capacitor banks at the load bus for power factor correction up to 1,
- 8. PMU voltage measurement error up to 0.001 p.u. and
- 9. PMU current measurement error up to 0.01 p.u.
- Results assessed and classified with decision trees (machine learning)

Carnegie Mellon University Scott Institute for Energy Innovation

Control Parametrization & Conditions of Detection – *In Silico*

- Control parametrization capturing fire approach in 0.1 s
- Conditions to capture fire approach from decision tree inference:
 - 86% of the cases with <u>fire burning for at least 60 s at a distance of at most 5 m</u> <u>from the conductor</u>,
 - \circ 100% of the cases with <u>V_w<1.35m/s and line loading >90%</u> and
 - 94% of the cases with <u>T_s<57°C, line loading>50% of the line static rating and</u> <u>fire burning for at least 10 s at a distance of at most 10 m from the conductor</u>.

Performance (False Positives, Timing Loss & Delay, Capacitor Switching) – *In Silico*

Control type & conditions	$\Delta tan \delta_t$ performance (%)				
	TP	TN	FP	FN	
Control 1 with $\Delta T_c > 2.87^{\circ}$ C	99.32	0.29	0.29	0.10	
Control 2 with $\Delta T_c > 2.87^{\circ}$ C and $V_{err} < 0.003\%$	89.13	0.00	0.00	10.87	

Power & Energy Society

for Energy Innovation

Thanks for allthe advice on30/34this work, NASPI!

Publications

• Moutis P., Sriram U. (2022). PMU-Driven Non-Preemptive Disconnection of Overhead Lines at the Approach or Break-Out of Forest Fires. IEEE Transactions on Power Systems.

Thanks for all the advice on 31/34 this work, NASPI!

Conclusions & Path Forward

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 32/34 this work, NASPI!

Conclusions & Path Forward

- Passive and poorly monitored electrical grids are problematic
- Monitoring with digital twins and some automation are necessary
- Avoiding preemptive disruption of end-customer' service
- Shortening fault intervention times & fault preparation
- Fault recording & learning phenomena

Thanks for your attention!

Questions, please?

http://panay1ot1s.com

Twitter: @PMoutis *LinkedIn*: Panayiotis Moutis

Carnegie Mellon University Scott Institute for Energy Innovation

Thanks for all the advice on 34/34 this work, NASPI!