

## Engineering Analysis Task Team

Evangelos Farantatos (EPRI) – Co-Lead Matthew Rhodes (SRP) – Co-Lead

> NASPI Hybrid Meeting October 18-19, 2022

## New EATT Mission Statement

- 1. Proliferate the development, testing, and validation of engineering applications and data analytical methods that use synchronized measurements systems.
- 1. Assist in the deployment and utilization of synchronized wide-area measurement applications.
- 2. Formulate and guide recommended R&D activities related to the advancement of wide-area synchronized measurement systems and their applications.

## Advanced Model Validation & Calibration

- EATT White Paper
- Lead: Honggang Wang (previously with GE)

Objective: Document industry advancements in model validation and calibration

Drafting has been completed

| 1                            | Introduction |                                                          |    |
|------------------------------|--------------|----------------------------------------------------------|----|
|                              | 1.1          | Motivation for Model Validation & Calibration            | 1  |
|                              | 1.2          | Power System Model Validation Overview                   | 3  |
|                              | 1.3          | State-of-the-Art Toolsets                                | 5  |
|                              | 1.3.1        | Power Plant Parameter Derivation (PPPD)                  | 7  |
|                              | 1.3.2        | Power Plant Model Validation Tool (PPMV)                 | 9  |
|                              | 1.3.3        | Power Plant Model Validation Simscape Design Solution    | 11 |
|                              | 1.3.4        | Generator Model Validation (GMV)                         | 12 |
|                              | 1.3.5        | PhasorAnalytics Dynamic Model Validation & Calibration   | 14 |
|                              | 1.4          | Current Limitations                                      | 15 |
| 2                            | Adva         | anced Model Validation                                   | 17 |
|                              | 2.1          | Enhanced Model Validation Procedure                      | 17 |
|                              | 2.2          | Performance Metrics                                      | 20 |
| 3 Advanced Model Calibration |              | anced Model Calibration                                  | 25 |
|                              | 3.1          | Advanced Parameter Selection                             | 25 |
|                              | 3.1.1        | Trajectory Sensitivity Approach                          | 25 |
|                              | 3.1.2        | Global Sensitivity Approach                              | 26 |
|                              | 3.1.3        | SVD Based Methods                                        | 28 |
|                              | 3.1.4        | Similarity Based Methods                                 | 30 |
|                              | 3.1.5        | Empirical Gramian Based Method                           | 31 |
|                              | 3.2          | Advanced Model Parameter Tuning                          | 32 |
|                              | 3.2.1        | Estimation Based Approach                                | 32 |
|                              | 3.2.2        | Optimization Based Approach                              | 35 |
|                              | 3.           | 2.2.1 Efficient Trust Region Approach                    | 35 |
|                              | 3.           | 2.2.2 Black-Box Optimization Based Approach              | 36 |
|                              | 3.           | 2.2.3 Approximate Bayesian Computation Based Approach    | 38 |
|                              | 3.2.3        | Machine Learning Based Approach                          | 40 |
|                              | 3.           | 2.3.1 Q-Learning Based Approach                          | 40 |
|                              | 3.           | 2.3.2 Conditional Variational Autoencoder based Approach | 42 |
|                              | 3.3          | Performance Validation Process and Metrics               | 45 |
| 4                            | Mult         | iple Event Based Model Validation & Calibration          | 48 |
|                              | 4.1          | Motivation for Using Multiple Events                     | 48 |
|                              | 4.2          | Event Selection                                          | 50 |
|                              | 4.3          | Multiple Event Model Calibration                         | 52 |
|                              | 4.3.1        | Simultaneous Calibration                                 | 52 |
|                              | 4.3.2        | Sequential Calibration                                   | 54 |
|                              | 4.3.3        | Distributed Calibration                                  | 58 |
| 5                            | Conclusions  |                                                          | 61 |

## EATT Edge Computing Survey

The EATT has released a survey to develop a beginning understanding of edge computing techniques and how synchrophasor data can contribute to such technologies.

Edge computing definition: Data collected, algorithms calculated, and decisions made at grid edge devices WITHOUT the translation of large amounts of system synchrophasor data to a central location. Local synchrophasor data transfer (say between substations) is considered an edge computing application.

The survey includes one question seeking your expertise and knowledge on existing or in-development synchrophasor edge computing applications.

Here is the link to the survey: <u>https://forms.office.com/g/nn82xy8e6M</u>