Duke Energy – a large-scale, highly regulated energy infrastructure company

Headquartered in Charlotte, NC

- **DUK**
- **LISTED**
- **NYSE**

A Fortune 150 Company

- **$72 B**
 - Market Cap
 - (As of 9/30/2022)

- **$172 B**
 - Total Assets
 - (As of 6/30/2022)

- **28 K**
 - Employees
 - (As of 12/31/2021)

- **54 GWs**
 - Total Generating Capacity
 - (As of 12/31/2021)

Electric Utilities & Infrastructure

- Operating in six constructive jurisdictions, with attractive allowed ROEs, serving 8.2 million retail customers
- Customer rates below the national average(1)
- Balanced generation portfolio that has reduced its Scope 1 carbon emissions by 44% since 2005(2)
- Industry-leading safety performance, as recognized by EEI

Gas Utilities & Infrastructure

- Five state LDCs serving 1.6 million customers
- Strong earnings trajectory driven by customer growth, system integrity improvements, and continued expansion of natural gas infrastructure
- Efficient recovery mechanisms allow for timely recovery of investments

Commercial Renewables

- Currently under strategic review
- Approximately 5 GWs of wind and solar in operation
- Long-term Power Purchase Agreements with creditworthy counterparties

(2) Year to year reductions will be influenced by customer demand for electricity, weather, fuel, purchased power costs and other factors
Road to Net Zero

Where we’ve been
(2005 – 2021)

- 7,500 MW coal retired
- 6,000 MW regulated renewables
- 44% CO₂ reduction by 2021
- Net-zero methane for LDC

Where we’re going
(2022 & beyond)

- 2030: On track to exceed 50% Scope 1 reduction target
- 2035: New interim target 50% Scope 2 & 3 reduction
- 2040: New interim target 80% Scope 1 reduction
- 2050: Affirming net-zero Scope 1,2,3 target

Notes:
1. Off 2005 levels
2. Off 2021 levels. Certain Scope 3 emissions include: upstream fossil fuel procurement, production of power purchased for resale, and downstream use of solid products in our natural gas LDCs.
3. Includes utility-owned and purchase power agreements.
4. Subject to regulatory approvals. Contemplates retiring Edwardsport coal gasifiers by 2035 or adding carbon capture utilization and storage to reduce carbon emissions.

Generation & Transmission Strategy
Carolinas Carbon Plan

PORTFOLIOS
- Grid Edge
- Coal Retirements
- New Solar
- Battery
- Onshore Wind
- Offshore Wind
- New Nuclear
- New Pumped Storage
- New CC
- New CT

Resources by 2035
- **P1** 70% by 2030
 - EE 1% of eligible retail sales
 - (-6.2 GW)
 - 11.9 GW
 - 4.2 GW
 - 0.8 GW
 - 2.5%
- **P2** 70% 2032 OSW
 - IVVC growing to 96% (DEC) and 97% (DEP) circuits
 - 8.6 GW
 - 2.3 GW
 - 1.6 GW
 - 1.1 GW
 - 2.4%
- **P3** 70% 2034 SMR
 - Winter DR & CPP
 - 7.6 GW
 - 2.4 GW
 - 0.6 GW
 - 1.9%
- **P4** 70% 2034 OSW + SMR
 - 7.6 GW
 - 2.0 GW
 - 0.8 GW
 - 0.8 GW
 - 2.0%

Average Annual Retail Bill Impact Through 2035
- 2.5%
- 2.4%
- 1.9%
- 2.0%

Note:
1. Gray blocks denote coal retirements, which are dependent on addition of resources shown.
2. Remaining coal planned to be retired by year end 2035.
3. New Solar includes solar + storage, excludes projects related to pre-existing programs such as HB 589 and Green Source Advantage.
4. Capacities as of beginning of 2035.
5. IVVC = Integrated Volt/Var Control.
6. CPP = Critical Peak Pricing.
7. Battery includes batteries paired with solar.
8. Average bill impact with Appalachian fuel availability; estimated bill impact with alternative fuel supply is 2.1% to 2.7% annually.
Diverse generation mix key to reliability and rate stability for customers

- **Renewables**: Builds to ~35% of total generation by 2040
- **ZELFRs**: Dispatchable zero-carbon resources; enables transition from natural gas
- **Existing nuclear**: Reliable zero-carbon baseload generation throughout
- **Natural gas**: Bridge fuel, enabling coal retirements over the next decade
- **Coal**: Represented ~60% of generation in 2005; declining to ~5% by 2030

(1) Zero-emission load following resources (ZELFRs) include small modular reactors and turbines run off hydrogen or biofuels.
Duke Energy PMU overview

- Approximately 400 PMUs installed and sending data to Pi
- PMUs are used for Post Event Analysis regularly by both Operations Engineering and Asset Management.
 - Solar performance during system disturbances
 - Time correlation and evidence of disturbances for fault analysis
 - After-the-fact analysis for longer duration faults
 - Occasionally request to see if PMUs detected an event
- PMUs use in real time applications is limited
 - Used in the EMS State Estimator to supplement SCADA data.
 - A PMU summary display of data in the EMS
 - Evaluating the results of Electric Power Group (EPG) analysis of PMU data for events to determine if Duke should consider real time notifications