Cameron Kruse, PE Engineering & Technology Manager <u>ckruse@kiuc.coop</u>

Kailiu Canyon

Kaua'i

Ni'ihau

O'ahu

Honolulu •

NASPI Joint Technical Workshop

Kaua`i Statistics

- 72,000 resident population (5% of State)
- Consistent visitor load (+28,000)
- 550 sq mi (10% of State)
- Member-owned Electric Cooperative
- High rates due to oil-dominated power supply (31-38 cents/kWh last 3 years)
- Low residential energy use due to stable climate (500 kWh per month avg)

KIUC Grid Statistics

- Completely islanded, vertically integrated
- 171 miles 69 kV-rated transmission
- 1,311 miles 12.47 kV distribution
- 35-80 MW daily demand profile
- 80 MW all-time peak (Aug 2019)
- 117 MW oil-fired generation capacity
- 106 MW solar (40% MW customer-owned)
- 16 MW hydro
- 7 MW biomass
- 58 MW / 240 MWh Battery Energy Storage

Background: Where Kaua`i Gets Its Power

Active In Use				
KIUC, Kāloa	Solar	12.0	4.6	
KIUC, Anahola	Şalar	12.0	4.6	E
Green Energy Team	Biomass	6.7	10.6	
McBryde, Port Allen	Solar	6.0	2.5	
McBryde, Wainiha/Kalaheo	Hydro	6.0	4.2	10
KIUC, Walahi	Hydro	1.5	0.7	
Gay & Robinson, Olokele	Hydro	7.3	8.9	
KAA, Waimea/Kekaha	Hydro	1.5	0.4	
Kapa'a Salar	Solar	1.0	0.4	P
Tesla Solar+Storage	Solar	13.0	3.8	
AES Lāwa'i Solar+Storage	Solar	20.0	8.6	
AES PMRF Solar+Storage	Solar	14.0	5.5	
MP2, 'Ôma'o	Solar	0.3	0.1	
Customer Solar	Solar	40.6	14.6	-
Under Development				
West Kaua'i Energy Project	Hydro	24.0	23.2	

Total Renewable
Energy in Service 2022
142.2 MW/67

Potential Renewable Energy in Service 2025 166.2 MW/85%

Methods of Operation

- Steady State Custom Island Wide Frequency Controller for dispatch
 - ~ 1 second resolution
 - Transients at most 50ms response
 - When operating in GFL, treated as negative load
 - GFM means voltage phasor (magnitude and angle) sourced from IBR
 - Implementations differ between vendors at this time

Methods of Operation - IBR's

- Steady State Custom Island Wide Frequency Controller for dispatch
 - ~ 1 second resolution

- Transients at most 50ms response
 - When operating in GFL, treated as negative load
 - GFM means voltage phasor (magnitude and angle) sourced from IBR
 - Implementations differ between vendors at this time

• Three Categories

- 1) Steady State
 - when running in parallel with synchronous machines and IBR's
- 2) Transient periods
- 3) Black start/microgrid

Fast Frequency Droop Response Leads to Steady **AAAAA** State Oscillations

Transient Periods

Blackstart / Microgrid

Evolving Interconnection Requirements for IBR Monitoring

KIUC's Latest Large Generation Interconnection Agreement (LGIA)

- Hawaii PUC Docket 2020-0218
 - LGIA link: <u>DocumentViewer (hawaii.gov)</u>