Machine Learning Based State Estimation for Transmission and Distribution Grids

Anamitra Pal (Email: <u>Anamitra.Pal@asu.edu</u>) Assistant Professor

Arizona State University (ASU), USA

Evangelos Farantatos (Email: efarantatos@epri.com)

Principal Project Manager

Grid Operations & Planning

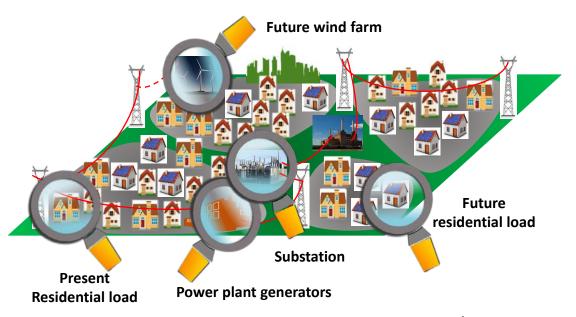
EPRI, USA

Acknowledgements: This work was supported in part by the Department of Energy under grants DE-AR00001858-1631 and DE-EE0009355, the National Science Foundation (NSF) under grant ECCS-2145063, and the Electric Power Research Institute (EPRI) under grant 10013085.

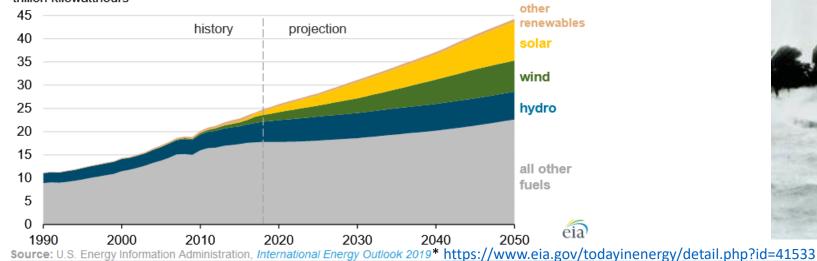
Outline

- Introduction
- State Estimation Background
- Machine Learning Based State Estimation
- Application in Distribution Systems
- Application in Transmission Systems
- Handling Topology Changes and Bad Data
- Summary & Future Work

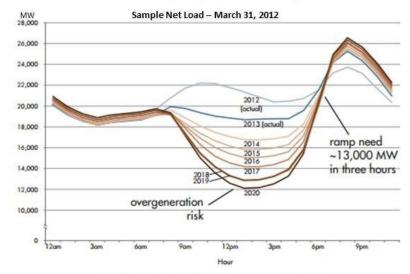
Power Systems ... Now and in the Future



World net electricity generation, IEO2019 Reference case (1990-2050)* trillion kilowatthours



The duck curve shows steep ramping needs and overgeneration risk



(from the California Independent System Operator)

Characteristics of Sensors Continuously **Monitoring Electric Power Grid**

	Transmission		Distribution		
	SCADA	PMU	Smart Meter	SCADA	μΡΜU/ D-PMU
Spatial Resolution	Very dense	Becoming dense	Dense	Sparse	Extremely sparse
Temporal Resolution	1 – 5 seconds	< 33 milliseconds	1 min – 1 hour	1 – 5 seconds	< 16 milliseconds
Latency	2 – 4 seconds	< 1 millisecond	Few hours to days	2 – 4 seconds	< 50 milliseconds
Time-synchronized?	No	Yes	No	No	Yes

• Time-synchronized measurements will continue to play an important role in the high-speed, high-precision monitoring, protection, and control of modern power systems!!!

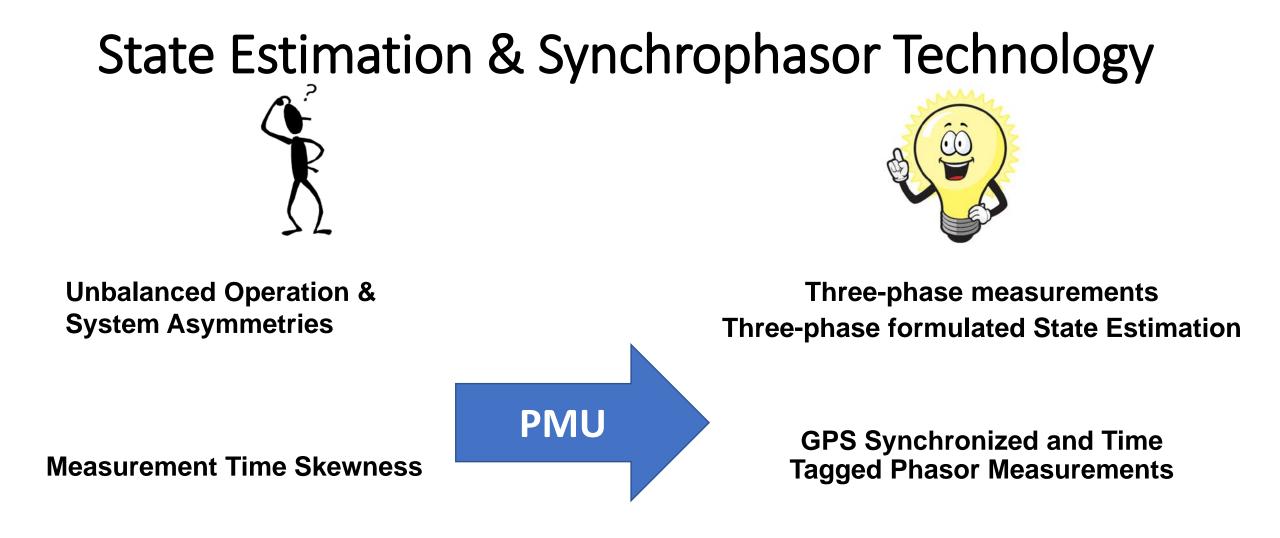
Conventional State Estimation

Backbone EMS Function for Situational Awareness

- State Definition [x]: Positive sequence voltage phasors (bus voltage magnitudes and angles) of system's buses
- Measurement Set [z]: From SCADA system
 - Voltage magnitude, current magnitude, real & reactive power flows and injections
 - Measurement model: Nonlinear [z] = [h([x])] + [e]
 - Gaussian distribution of measurement error
- Solution Algorithm: Weighted Least Squares
 - Iterative Solution

Biased State Estimation

- Unbalanced Grid Operation/System Asymmetries
- Measurement Time Skewness
- Large Scale Problem/Long Execution Time (30 secs-3 mins)



Large Scale Problem – Computationally Demanding

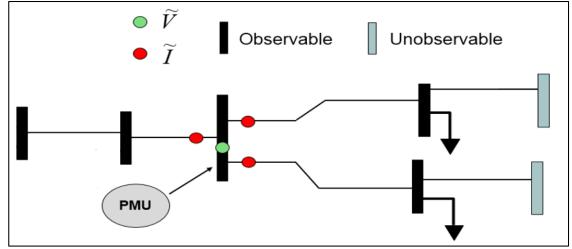
Linear State Estimation

Linear State Estimation

PMU Measurement Based State Estimation

- State Definition [x]: The same
- Measurement Set [z]: From PMUs
 - Voltage and current phasors
 - Measurement model: Linear Z = H(X) + e
 - Gaussian distribution of measurement error
- Solution Algorithm: Weighted Least Squares

Direct Solution



Drawback: Requirement for full system observability from PMUs

Can machine learning (ML) help overcome the disadvantages of a purely synchrophasor-based state estimation approach???

PMU Observability

Least Squares Approach vs. Bayesian Approach

Least squares estimation:

$$\hat{x}_{\text{WLS}}(z) = \arg\min_{y} ||z - h(x)||^2$$

Minimizes the modeling error

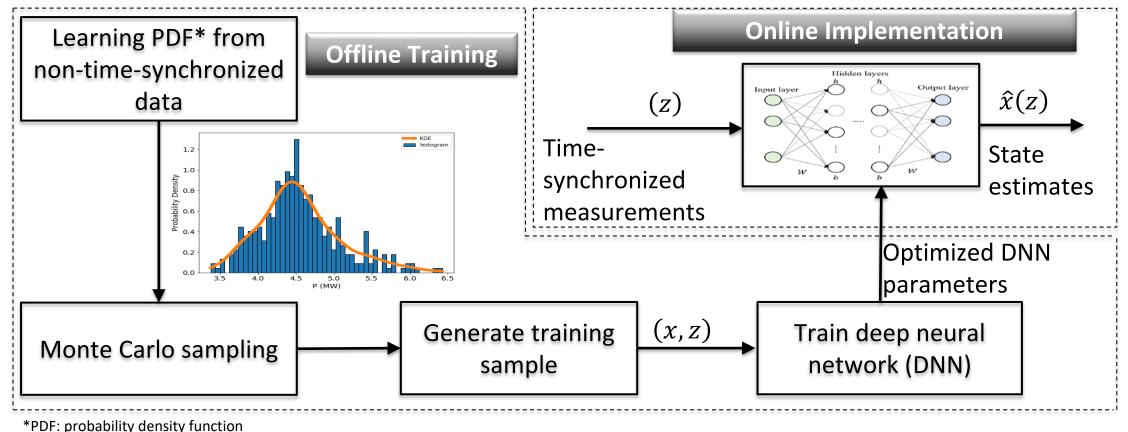
Minimum mean squared error (MMSE) for Bayesian estimation:

$$\min_{\hat{x}(.)} \mathbb{E}(\|x - \hat{x}(z)\|^2) \Rightarrow \hat{x}^*(z) = \mathbb{E}(x|z)$$

Directly minimizes the estimation error

- Computation of the conditional mean can be exceedingly complex
- The underlying joint distribution of x and z is unknown or impossible to specify, making the direct computation of \hat{x}^* intractable
- Deep neural network (DNN) can be used to approximate the MMSE state estimator

Schematic of the Proposed Methodology



- Non-time-synchronized data is only used to generate sample data to train the DNN (Offline operation)
- Time-synchronized measurements are used in the testing stage (Online operation)
- Does not require complete system observability by PMUs/µPMUs/D-PMUs

Least Squares-based State Estimation vs. Proposed DNN-based State Estimation¹

Classical Least Squares	Deep Neural Network
Increased observability is required for better	Observability is not needed for online
online operation	operation
Slow online computation time	Fast online computation time
Susceptible to non-Gaussian noise in the	Relatively immune to measurement noise
measurements	characteristics
Synchronizing inputs from different sensors is a challenge	Issue of incompatible timescales is mitigated (non-time-synchronized data is not directly used in state estimation)
Accuracy is a function of observability	Accuracy is a function of training
Simple to solve	Parameter tuning is difficult

10

[1] B. Azimian, R. S. Biswas, A. Pal, and L. Tong, "Time synchronized distribution system state estimation for incompletely observed systems using deep learning and realistic measurement noise," in *Proc. IEEE Power Eng. Soc. General Meeting*, Washington DC, pp. 1-5, 26-29 Jul. 2021.

Characteristics of Distribution System and DNN

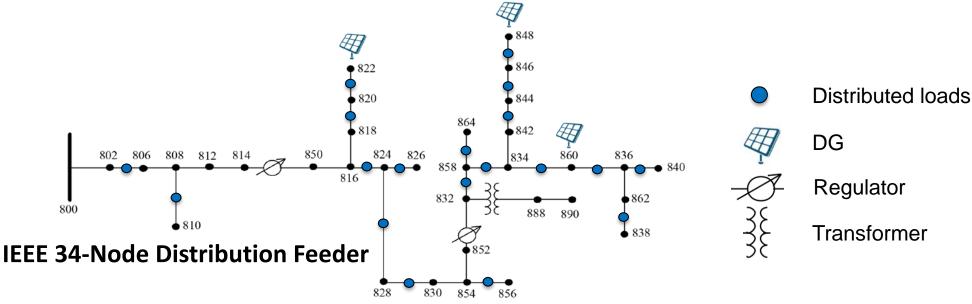
۲

• Distribution System Characteristics:

- Single, double and three phase unbalanced Wye-Delta loads
- ZIP load models
- Voltage regulators and transformers
- Single, double, and three phase laterals
- Distributed generation (DG)

Deep Neural Network (DNN) Characteristics²:

- 5 Hidden layers 200 neurons/layer
- ReLU activation function for hidden layers
- Linear activation function for output layer
- Optimizer: ADAM
- Empirical mean squared error loss function
- Separate neurons and layers for each phase



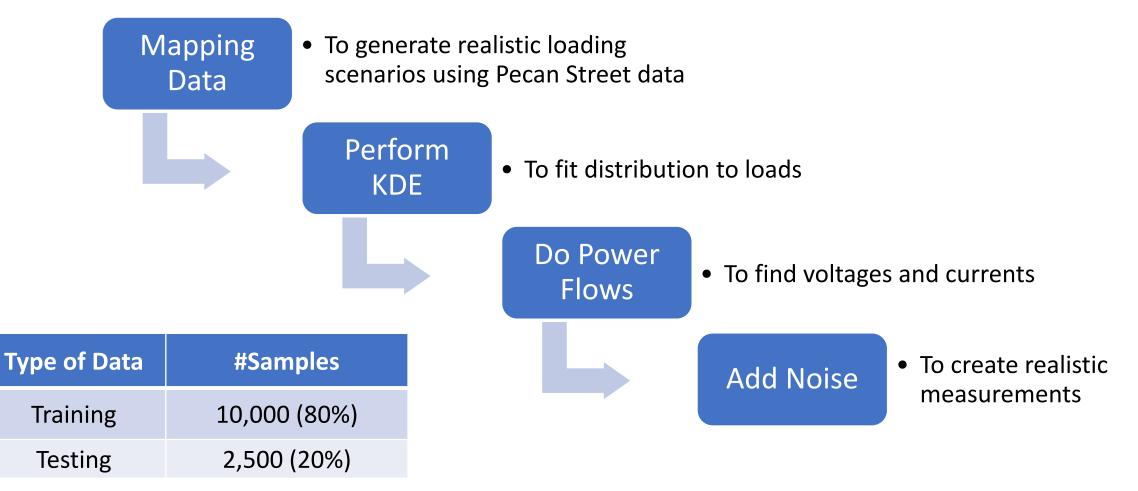
[2] B. Azimian, R. S. Biswas, S. Moshtagh, A. Pal, L. Tong, and G. Dasarathy, "State and topology estimation for unobservable distribution systems using deep neural networks," *IEEE Trans. Instrum. Meas.*, vol. 71, pp. 1-14, Apr. 2022.

µPMU/D-PMU Placement to facilitate DNN-based Distribution System State Estimation (DSSE)

- Conventional optimal µPMU/D-PMU placement strategies aim for complete system observability
- New algorithm is proposed that enables DNN-based DSSE by exploiting the correlations that exist between the input features

Algorithm: µPMU/D-PMU Placement for DNN-based DSSE		
Inputs	: Budget, DSSE _{accuracy} , Corr _{Threshold} , Number of nodes = M	
Outpu	it: Location of the μPMUs/D-PMUs	
A.i.	$N_{cluster} = 1$	
A.ii.	Calculate correlation coefficient between each voltage phasor $V_{ij}^{kl} \forall i \in$	
	$\{A, B, C\}, \forall j \in \{\text{mag, ang}\}, \& \forall k, l \in \{1,, M\}$	
A.iii.	If correlation coefficient $\forall k, l \in \{1,, M\}$ is greater than $Corr_{Threshold}$	
	for $\forall i \in \{A, B, C\} \& \forall j \in \{\text{mag, ang}\}$ then go to (A.vii.)	
A.iv.	$N_{cluster} = N_{cluster} + 1$	
A.v.	Cluster each correlation coefficient matrix for $\forall i \in \{A, B, C\} \& \forall j \in$	
	{mag, ang}	
A.vi.	Find common node in each cluster for each correlation coefficient and	
	place µPMU/D-PMU on this node.	
A.vii.	If DSSE _{accuracy} is satisfied or μ PMU/D-PMU installation cost \geq Budget,	
	then End, else go to (A.iv.)	

Generating Training Database for IEEE-34 Node Distribution System



DNN-based State Estimation for IEEE-34 Node Distribution System

Results for Linear State Estimation (LSE) and Proposed DNN-based State Estimation*

Method	Phase MAE (degrees)	Magnitude MAPE (%)	#Nodes
Linear State Estimation (LSE)	0.0194	0.0352	22 ³
DNN-based State Estimation	0.0241	0.0386	3

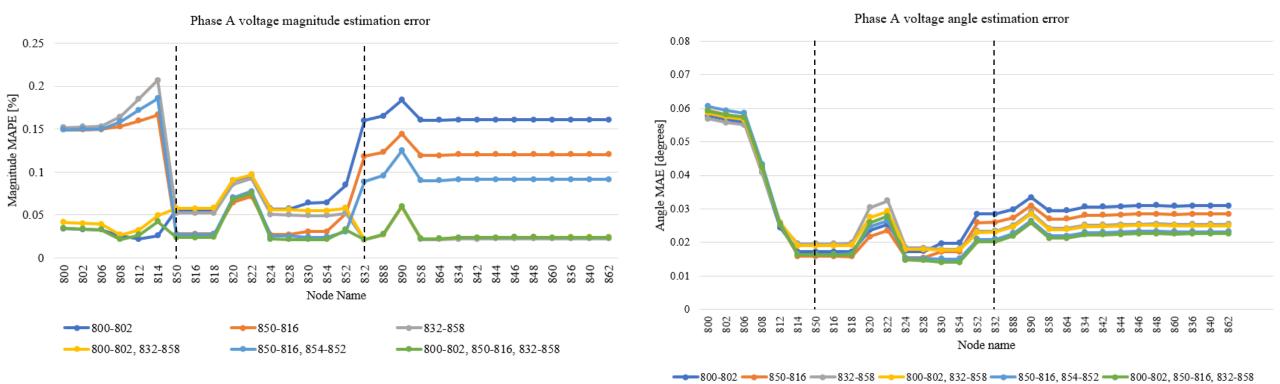
* When measurement noise is Gaussian

DNN-based State Estimation Results Under Gaussian and Non-Gaussian Measurement Noise

Method	Phase MAE (degrees)	Magnitude MAPE (%)	#Nodes	
DNN with Gaussian Noise	0.0241	0.0386	3	
DNN with Non-Gaussian Noise	0.0242	0.0393	3	
$MAPE = \frac{1}{n} \sum_{j=1}^{n} \left \frac{y_j - \hat{y}_j}{y_j} \right \qquad MAE = \frac{1}{n} \sum_{j=1}^{n} \left y_j - \hat{y}_j \right $				

[3] R. S. Biswas, B. Azimian, and A. Pal, "A micro-PMU placement scheme for distribution systems considering practical constraints," in *Proc. IEEE Power Eng. Soc. General Meeting*, Montreal, Canada, pp. 1-5, 2-6 Aug. 2020.

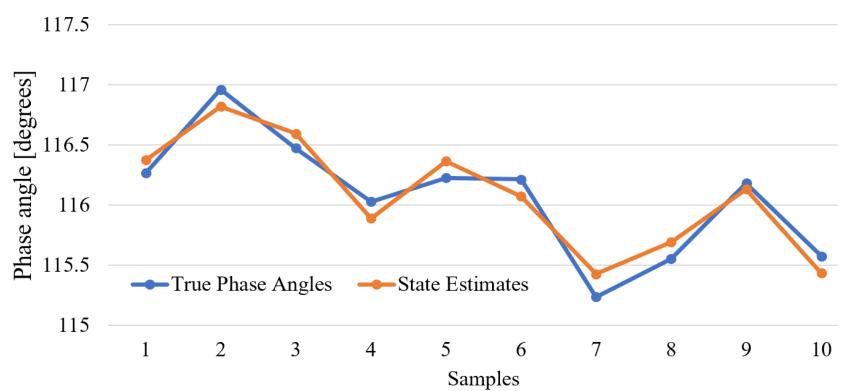
Demonstrating Impact of µPMU/D-PMU Placement on DNN-based DSSE Performance



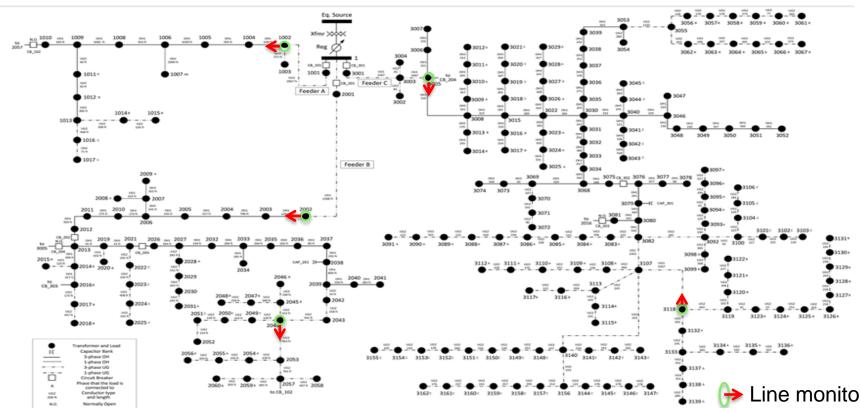
- Minimum magnitude estimation error was obtained when the three μPMUs/D-PMUs were placed in three different clusters
- μPMU/D-PMU placement does not significantly influence angle estimation error as the intercorrelations are very high

Demonstrating High-Speed Tracking Ability of the DNN-based State Estimator

- A trained DNN performs a matrix multiplication of the input values with the weights and biases of its neurons – a process that can be executed very fast
- The DNN took only 0.01 seconds to produce the estimates



DNN-based State Estimation for 240-Node U.S. Midwest Distribution System



- System Characteristics⁴:
 - 3 feeders, 240 nodes
 - One-year worth of hourly smart meter data available
 - Overhead lines, underground cables, capacitor banks, LTC transformers, line switches, and secondary distribution transformers
 - OpenDSS model available

Line monitored by µPMU/D-PMU

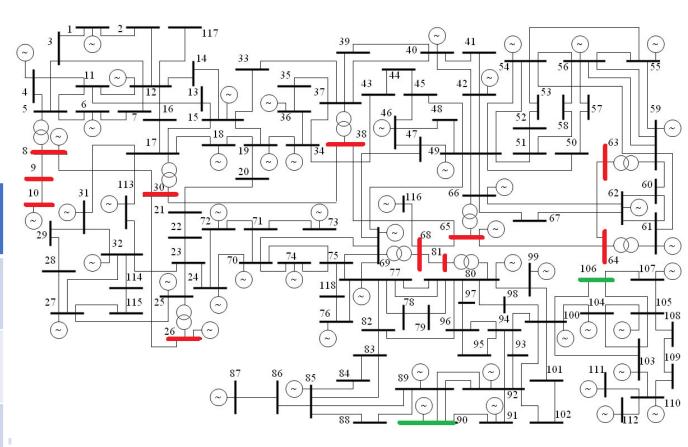
Method	Phase MAE (degrees)	Magnitude MAPE (%)	#Nodes
DNN-based DSSE	0.0081	0.0144	5

[4] F. Bu, Y. Yuan, Z. Wang, K. Dehghanpour, and A. Kimber, "A Time-Series Distribution Test System Based on Real Utility Data," 2019 North American Power Symposium (NAPS), Uichita, KS, USA, 2019, pp. 1-6

DNN-based State Estimation for Transmission Systems – Incremental PMU Placement

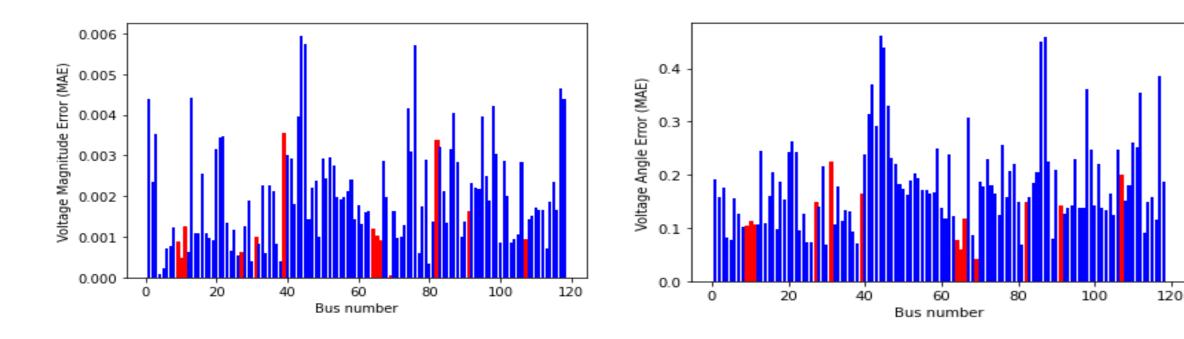
- New PMUs added based on two criteria:
 - High variability in training dataset
 - Distance from existing PMUs

Method	Phase MAE (°)	Magnitude MAPE (%)	#Buses
LSE with Gaussian Noise	0.1693	0.9051	32 ⁵
DNN-SE with Gaussian Noise	0.1453	0.1209	13
DNN-SE with Laplacian Noise	0.1528	0.1579	13



[5] A. Pal, G. A. Sanchez, V. A. Centeno, and J. S. Thorp, "A PMU placement scheme ensuring real-time monitoring of critical buses of the network," *IEEE Trans. Power Del.*, vol. 29, 18 no. 2, pp. 510-517, Apr. 2014.

DNN-based State Estimation for IEEE 118-Bus Transmission System (per bus view)

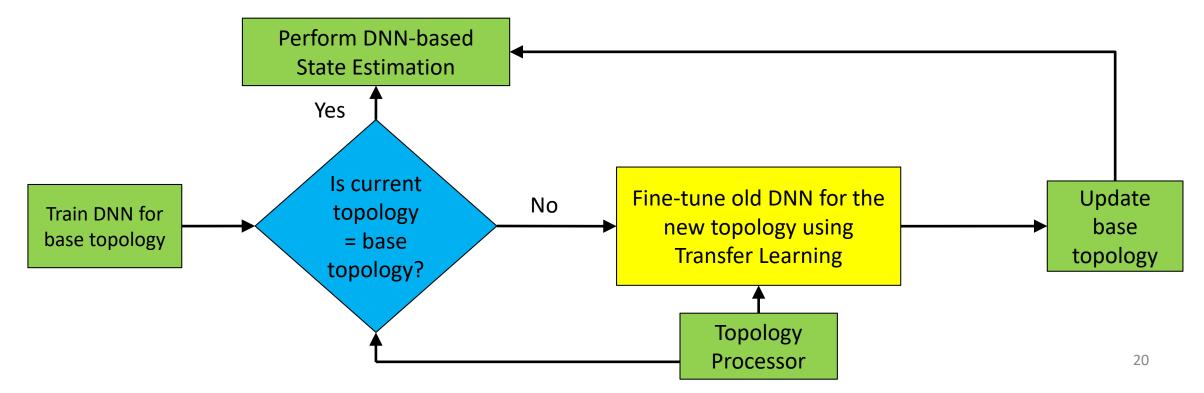


Red color: Bus locations where PMUs are placed Blue color: Bus locations where PMUs are not placed

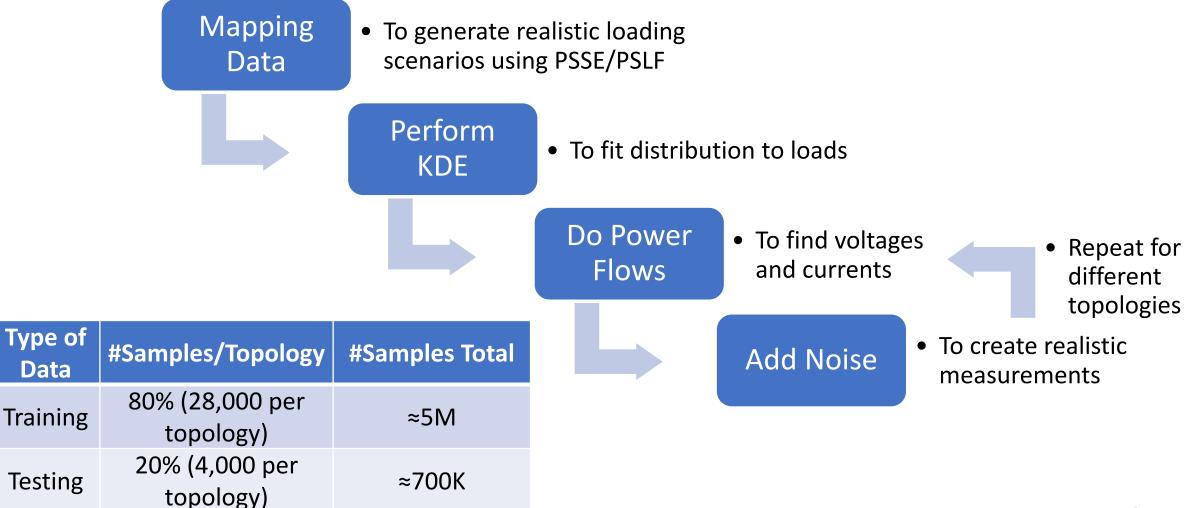
Evaluation Metric	Value
Phase MAE (°)	0.1453
Magnitude MAPE (%)	0.1209

DNN-based State Estimation Under Varying Topologies

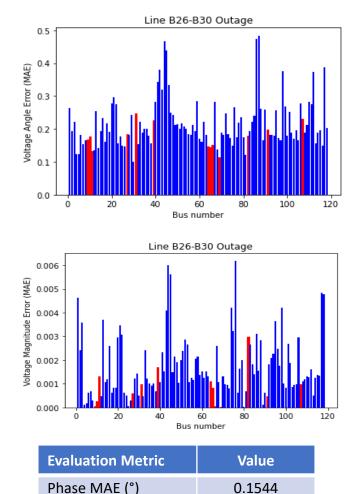
- So far, the DNN-based state estimation (DNN-SE) was trained for a given (fixed) topology
- However, if the DNN is tested with different topologies, its performance can deteriorate
- Transfer Learning is the ability to fine-tune a DNN's parameters for a given change in training and testing environment



Generating Training Database for IEEE 118-Bus Transmission System for Handling Topology Changes

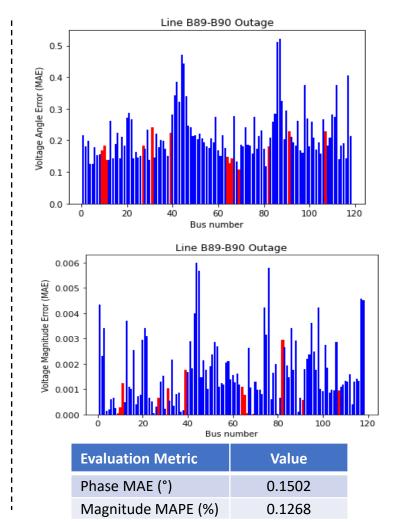


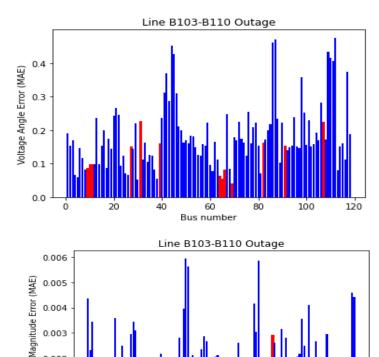
Transfer Learning Results for Different Topologies of the IEEE 118-Bus System



0.1279

Magnitude MAPE (%)





0.003

0.002

0.001

Voltage

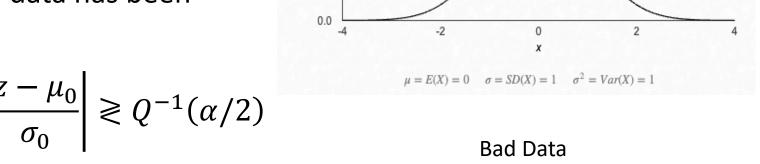
0.000	0 20 40 60 Bus nur	80 100 nber	120
	Evaluation Metric	Value	
	Phase MAE (°)	0.1490	
	Magnitude MAPE (%)	0.1258	

Bad Data Detection for the DNN-based State Estimator

- Due to the unobservability problem, conventional bad data detection and correction approaches are not suitable for this DNN-based state estimator
- The use of Wald Test to detect bad data has been proposed previously⁶

where,
$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} \exp\left(-\frac{u^2}{2}\right) du$$

- Bad data is detected when the deviation exceeds the threshold set by $\pmb{\alpha}$



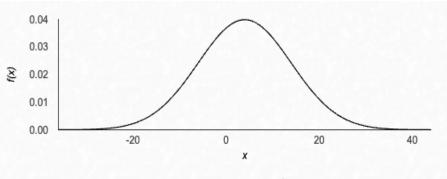
0.4

0.3

0.2

0.1

X



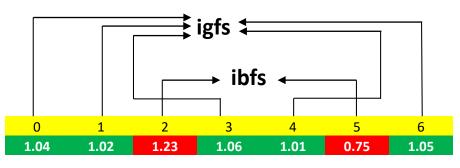
Normalized Input Data

[6] K. R. Mestav, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," *IEEE Trans. Power Syst.*, vol. 34, no. 6, pp. 23 4910-4920, Nov. 2019.

 $[\]mu = E(X) = 4$ $\sigma = SD(X) = 10$ $\sigma^2 = Var(X) = 100$

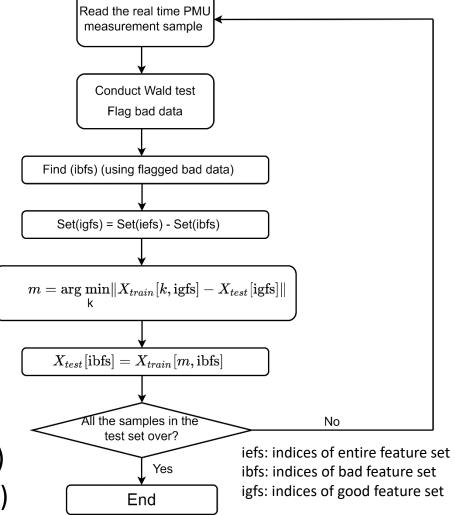
Bad Data Correction for the DNN-based State Estimator

- α is typically set at 0.05, implying that the false alarm (false positive) probability is no greater than 5%
- Contrary to replacing the bad data by its corresponding training data mean⁶, it is replaced by the operating condition (OC) that is closest in the training database



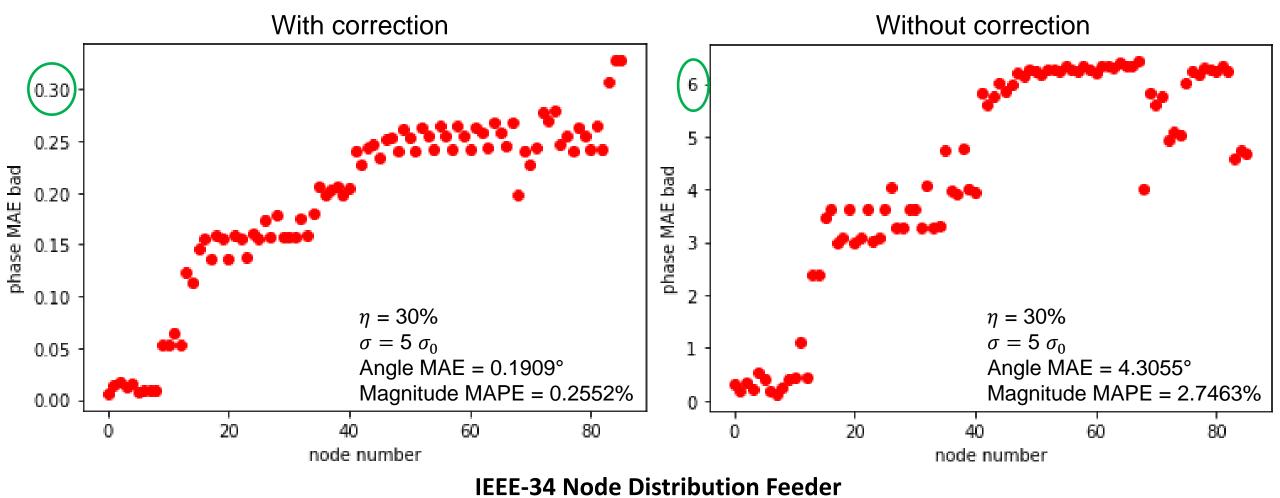
- Furthermore, two types of bad data are investigated:
 - Amount of bad data (expressed in terms of variations in η)
 - Badness of bad data (expressed in terms of variations in σ)

[6] K. R. Mestav, J. Luengo-Rozas and L. Tong, "Bayesian State Estimation for Unobservable Distribution Systems via Deep Learning," *IEEE Trans. Power Syst.*, vol. 34, no. 6, pp. 4910-4920, Nov. 2019.

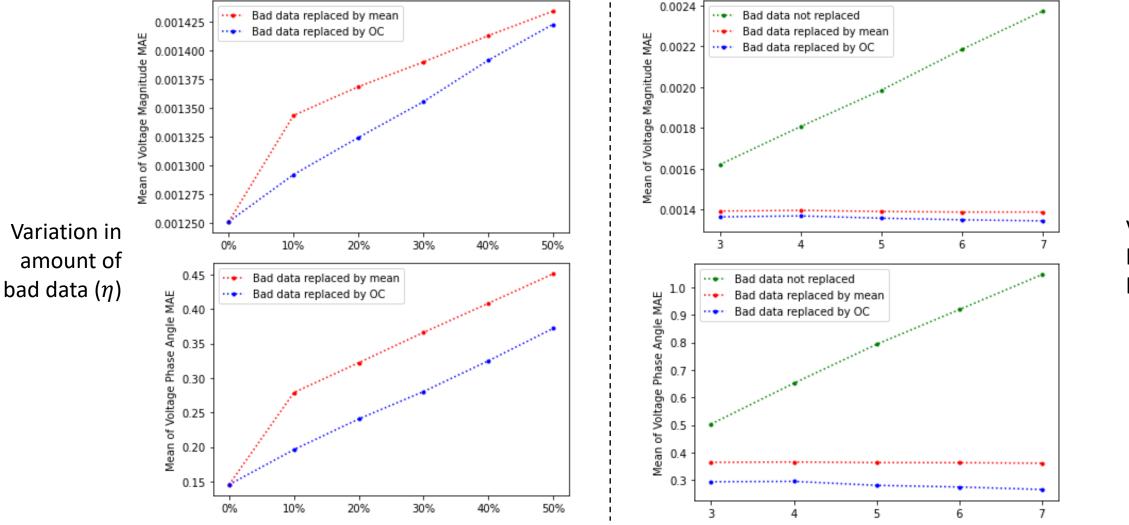


24

Impact of Bad Data Correction on DNN-based State Estimation Accuracy (Distribution)



Impact of Bad Data Correction on DNN-based State Estimation Accuracy (Transmission)



Replacing bad data using the nearest OC results in higher accuracy than replacing using the mean value 26

Variation in badness of bad data (σ)

Summary and Future Scope of Work

- A methodology to perform time-synchronized state estimation using deep learning was formulated for systems that are incompletely observed by PMUs/µPMUs/D-PMUs
- Different strategies to place PMUs/µPMUs/D-PMUs for improving the state estimator's performance were explored
- Ability to handle topology changes and bad data were demonstrated
- Ongoing work:
 - Providing robustness guarantees to DNN performance
 - Incorporating physics of the system during training data generation
 - Developing advanced monitoring, protection, and control capabilities using the obtained insights

Antos Varghese

Behrouz Azimian

Satya Sahoo

Shiva Moshtagh

Hritik Shah