

Field Implementation of Wide-area Damping Control System in Large-scale Power Grids

NASPI Work Group Meeting (Virtual) April 12-14, 2022 Presenter: Yi Zhao

Yi Zhao¹, Wenpeng Yu¹, Xinlan Jia¹, Chengwen Zhang¹, Lin Zhu², Evangelos Farantatos², Cosimo Pisani³, Benedetto Aluisio³, Daniele Vismara⁴, Fabrizio Pirovano⁴, and Yilu Liu^{1,5}

1. University of Tennessee-Knoxville; 2. Electric Power Research Institute; 3. Terna; 4. LogicLab; 5. Oak Ridge National Laboratory.

- Introduction
- Field Deployment of WADC System: Centralized Control Structure
- Implementation of Centralized WADC System on Hardware-In-the-Loop (HIL) Platform
- HIL Test Results
- Summary

Introduction of Continental Europe Power System

- A dominant oscillation mode between France/Germany and south Italy
 - Around 0.3Hz.
 - Damping ratio is around 7% under normal conditions.
- Dec. 3, 2017, growing 0.293 Hz oscillation was monitored.
 - Grid operated in an unusual light load condition
 - Triggered by two consecutive generation disconnections due to market operation.
 - Lasted approximately 10 minutes.

Field Deployment of WADC

HIL Testing Platform of WADC

Software WADC based on OpenPDC

Function Modules of WADC

• Basic functions: Filter, lead-lag structure.

Receiving

• Time delay compensation functions: delay calculator, data buffer, delay compensator, supervisory control

LogicLab PMU Device

• LogicLab PMU Device:

- Receive WADC control command from the control center in C37.118 protocol and send to the voltage set point of synchronous condenser.
- An interface device is interposed between LogicLab Device and Excitation system in order to ensure galvanic isolation between the two systems.

HIL Test Results: Base case

- Control Performance Validation: with VS without WADC
 - Inherent delay: ~600 ms

HIL Test Results: Constant Delay Impact

- TCP and UDP can both tolerate up to 1200 ms constant delay.
 - Inherent delay: ~600 ms (measurement delay, actuation delay, etc.)
 - Additional delay: 0/200/400/600 ms communication delay

UDP

TCP

HIL Test Results: Random Delay Impact

- TCP and UDP can both tolerate a wide range of random delay (Gaussian distribution).
 - Mean = 400 ms, std. = 150 ms 0
 - Mean = 400 ms, std. = 50 ms 0
 - Mean = 200 ms, std. = 150 ms 0
 - Mean = 200 ms, std. = 50 ms 0

350

HIL Test Results: Random Data Loss Impact

- TCP: Tolerates less than 10% random data drop
- UDP: Tolerates up to 90% random data drop

UDP

TCP

HIL Test Results: Chunk Data Loss Impact

- Data Loss Scenario: 100s data loss.
- TCP needs additional waiting time to receive data, supervisory control is very important for keeping the system stable.

HIL Test Results: Chunk Data Loss Impact

- Data Loss Scenario: 100s data loss
- UDP can receive data quickly after the primary PMU data recovers.

HIL Test Results Summary

	Inherit Delay + Constant Delay	Inherit Delay + Random Delay	Random Data Drop	Supervisory Control
ТСР	tolerate up to 600ms inherit delay + 600ms constant delay	tolerate up to 600ms inherit delay + 400ms constant delay with 150ms random variation delay	tolerate less than 10% random data drop	start receiving data with additional waiting time (~150s) after chunk data loss
UDP	tolerate up to 600ms inherit delay + 600ms constant delay	tolerate up to 600ms inherit delay + 400ms constant delay with 150ms random variation delay	tolerate up to 90% random data drop	start receiving data immediately after chunk data loss
Performance Comparison	Almost the same	TCP performance slightly better when the random delay goes over 400ms +150ms variation	UDP better	UDP better

Summary and Future Work

- Centralized WADC system based on openPDC has been implemented.
- Effectiveness of centralized WADC system has been tested through HIL platform.
- Various communication uncertainty operating scenarios have been mimicked on HIL platform to test the performance of the WADC.
- WADC system is being field deployed at Terna power grid.
 - > Field testing scheduled in late April.

Thank You! Q&A

