

Shrinking MISO's Synchrophasor Data

NASPI Spring Conference April 14, 2022

MISO Synchrophasors at a Glance

- MISO established its synchrophasor program in 2011 as part of a DOE grant
- Internal PMUs: 572
 External PMUs: 70
- Not currently operationalized or in CIP

Current Data Footprint

- Current setup uses
 Oracle with daily
 partitions
- Nearly 200 TB of total data
- 250 TB of dedicated SAN
- Performance is mediocre
- This is expensive!

Measurement Type	Retention	Size
ABC	6 months	33 TB
PosSeq	1 year	60 TB
Down Sampled	2 years	5 TB
Total Per Site	-	98 TB
Grand Total	-	196 TB

Pivoting to a TSDB

Time-series databases (TSDB) have become mainstream since 2011

Historian vs TSDB has blurred

Can we do better?

Considered Storage Options

		-
	Pro	Con
Upgrade Oracle	No rework	• Many
OSIsoft PI	Widely used for phasor data	LicensingBetter compression available
InfluxDB	Excellent CompressionFirst class time-series	One-off supportPlatform specific clients
TimescaleDB	Postgres extensionExcellent CompressionFirst class time-seriesSQL!	More manual setup
Parquet	Standard big data formatGood compression	Manual integrationsDesirable features are not yet mainstream
Custom Format (Protobuf)	• Smallest data footprint	Many custom integrations
Others (Cassandra/OpenHistorian/Etc)	-	One-off supportReference Architecture

RDBMS vs Big Data

- Quickly narrowed down to Parquet and Timescale
- Parquet: +Seq @ 1 PMU/day
 - Raw (40 MB)
 - Gzip (25 MB)
 - Gzip + Delta Encoding (8 MB)
 - Limited implementations
- TimescaleDB: +Seq @ 1 PMU/day
 - Uncompressed: 267 MB
 - Compressed: 27 MB

Compressed size w/o indexes only 0.5 MB

Choosing Column Types

	Float	Integer	Numeric	
Angle - Current	13	44	11	
Angle - Voltage	16	58	14	
Magnitude - Current	18	60	17	
Magnitude - Voltage	17	54	18	
Frequency - Magnitude	26	54	20	
Frequency - Delta	19	52	15	
Quality	40	122	34	
Compression Ratio Compression Factor	20 0.05 0.0	40 60 025 0.016667 0.	80 100 120 .0125 0.01 0.008333	

New Data Footprint

	ABC	PosSeq	Down	Total
Timescale Before	28.7 TB	55.7 TB	4.0 TB	88.5 TB
Timescale After	1.2 TB	1.3 TB	0.1 TB	2.6 TB
Compression Ratio	25	43	32	34
Compression Factor	4.1%	2.3%	3.1%	2.9%

Oracle's 98 TB per dataset to 2.6 TB!

TimescaleDB Experience

- Built on Postgres
 - Get a bonus mainstream RDBMS for metadata
 - Postgres replication and backup tools
 - Standard SQL and clients
 - Transition from Oracle RDBMS relatively easy
- Fine grain control over compression
- Easy SQL to convert to fixed-point integer storage
- Performance tested >1m rows/sec
- Massive compression savings with better performance
- Parquet looks very promising for cold-storage

Questions

bkiefer@misoenergy.org

Appendix

TimescaleDB Compression

 https://www.timescale.com/blog/timeseries-compression-algorithms-explained/

