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Overview

I Transient stability control is based on actions that are taken automatically
to ensure the system remains in synchronism (e.g., RAS).

– Classical examples include generator rejection and dynamic braking.
– These methods rapidly absorb excess energy at key points in the system.

I Such approaches cannot inject real power to compensate for a deficit.

I Utility-scale IBRs (e.g., storage) enable bidirectional modulation of real
power with the bandwidth necessary to provide synchronizing torque.

I R. Elliott, H. Choi, D. Trudnowski and T. Nguyen, “Real Power Modulation
Strategies for Transient Stability Control,” in IEEE Access, 2022.
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Comparison of control strategies
I Here we compare three control strategies:

– Bang-Bang Speed (BBS) control, (Ojetola et al., 2021)
– Energy Function Sensitivity (EFS) control, (Kawabe and Yokoyama, 2011)
– Trajectory Tracking control (TTC), (Elliott et al., 2020)

I As an example system we consider a version of the KRK 2-area system
augmented with energy storage.

– The system is loaded so that Area 1 sends ~500MW to Area 2.
– The disturbance is a 3-phase bolted fault on the line between buses 3–5.
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1 10 200 20 10
2 20 1800 180 90
3 110 200 20 10
4 120 1800 180 90

3



System response

I The bang-bang control approach yields the largest reduction in the first-swing
rotor angle excursion (difference between G2 and G4 shown at right).
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Critical clearing time comparison

I It’s important that the controllers not inject power in steady-state in order to
prevent adverse interaction with governing and AGC.

I The table at right shows how the CCT changes as the battery size increases.
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Table: Critical clearing time.

Rated power BBS EFS TTC
(% of gen.) (cyc) (∆%) (cyc) (∆%) (cyc) (∆%)

0 2.0 – 2.0 – 2.0 –
5 6.0 200 4.5 125 7.0 250
10 6.5 225 5.0 150 10.0 400
15 8.0 300 5.5 175 12.5 525
20 9.0 350 5.5 175 14.5 625
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Transient stability assessment

I Chief question: If a stable post-disturbance equilibrium exists, is the system
able to navigate to it?

I Region of attraction: From initial conditions inside the ROA, the system
converges to the stable equilibrium.
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Comparison of stability assessment methods
I The figure at left shows a slice of the ROA for generator G2 following the

3-phase fault near bus 5, generated using brute-force simulation.

I At right, the Transient Energy Function (TEF) method. The TEF method is
conservative because it doesn’t account for generator or IBR controls.
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Illustration of the Koopman framework
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I We an explore a data-driven stability assessment technique based on
Koopman operator theory, which does not require a model of the system.

I Basic idea: Determine a type of nonlinear coordinate transformation such that
the system dynamics become linear in the new (lifted) space.

I The Koopman operator advances the system in the lifted space,
g(xk) = Kg(xk). Decomposition of K provides spatio-temporal insights.
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Data-driven ROA estimation
I We estimated the ROA for generator G2 using the Extended Dynamic Mode

Decomposition (EDMD) algorithm (Williams, 2015).

I The open-loop case is shown at left, and the closed-loop case at right, where
the color map indicates the level sets of the dominant eigenfunction.
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Summary

I Data-driven stability assessment techniques do not require an explicit
dynamical model of the system.

– The Koopman operator approach showed promising results, but future work is
required for realistic systems (scalability and computational effort).

I Transient stability control schemes based on physics almost invariably use an
estimate of the center-of-inertia speed and/or angle.

– Wide-area measurement systems that are accurate and secure are critical to
successful implementation of any of these strategies.

I Simulations and analysis for this work were conducted using the
MATLAB-based Power and Energy Storage Systems Toolbox (PSTess).
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