

Engineering Analysis Task Team

Evangelos Farantatos (EPRI) – Co-Lead Matthew Rhodes (SRP) – Co-Lead

> NASPI Virtual Meeting April 13, 2022

New Mission Statement

- 1. **Proliferate** the development, testing, and validation of engineering applications that use synchronized measurements systems.
- 2. Assist in the deployment and utilization of synchronized wide-area measurement applications.
- 3. Formulate and guide recommended R&D activities related to the advancement of widearea synchronized measurement systems and their applications.

Advanced Model Validation & Calibration

- EATT White Paper
- Lead: Honggang Wang (GE)

North American Synchrophasor Initiative March 2015
Model Validation Using Phasor
Measurement Onit Data
NASDI Technical Penert
March 20, 2015
NASP North American Synchrop Phasor Initiative
Synchron Hussen Annualee

Objective: Document industry advancements in model validation and calibration

Outline & Progress

Chapter 1

• Section 1.2 to be completed

• Chapter 2

- Completed section 2.2
 - Neeraj Nayak (EPG)
 - Mani Venkatasubramanian (WSU)
 - Urmila Agrawal & Pavel Etingov (PNNL)

• Chapter 3

- Completed section 3.1
 - Junbo Zhao (UConn)
 - Junjian Qi (Stevens Inst. Tech)
 - Honggang Wang (GE)
- Completed section 3.2
 - Renke Huang (PNNL)
 - Junjian Qi (Stevens Inst. Tech)
- Section 3.3 to be completed
 - Honggang Wang (GE)

White Paper Link

1	In	ntroduction	1
	1.1	Motivation for Model Validation & Calibration	1
	1.2	Datasets and Data Requirements for Model Validation & Calibration	3
	1.3	Power System Model Validation Overview	4
	1.4	State-of-the-Art Methods and Tools for Model Validation & Calibration	6
	1.	.4.1 Power Plant Parameter Derivation (PPPD)	9
	1.	.4.2 Power Plant Model Validation Tool (PPMV)	11
	1.	.4.3 Power Plant Model Validation Simscape Design Solution	13
	1.	.4.4 Generator Model Validation (GMV)	14
	1.	.4.5 PhasorAnalytics Dynamic Model Validation & Calibration	16
	1.5	Limitations of Existing Methods and Desired Features of Advanced MVC	17
2	А	Advanced Model Validation	19
	2.1	Enhanced Model Validation Procedure	19
	2.2	Performance Metrics	22
3	А	Advanced Model Calibration	27
	3.1	Advanced Parameter Selection	27
	3.	1.1 Trajectory Sensitivity Approach	27
	3.	1.2 Global Sensitivity Approach	28
	3.	.1.3 SVD Based Methods	30
	3.	.1.4 Similarity Based Methods	32
	3.	.1.5 Empirical Gramian Based Method	33
	3.2	Advanced Model Parameter Tuning	34
	3.	2.1 Estimation Based Approach	34
		3.2.1.1 Kalman Filter (KF, EKF, Ensemble)	35
	3.	2.2 Optimization Based Approach	38
		3.2.2.1 Efficient Trust Region Approach	38
		3.2.2.2 Black-Box Optimization Based Approach	39
		3.2.2.3 Approximate Bayesian Computation Based Approach	40
	3.	2.3 Machine Learning Based Approach	42
		3.2.3.1 Q-Learning Based Approach	43
		3.2.3.2 Conditional Variational Autoencoder based Approach	45
	3.3	Performance Validation Process and Metrics	47
4	Μ	Aultiple Event Based Model Validation & Calibration	48
	4.1	Motivation for Using Multiple Events	48
	4.2	Event Selection	50
	4.3	Aggregation of Performance Metrics Across Multiple Events	50
	4.4	Multiple Event Model Calibration	50
	4.	.4.1 Simultaneous Calibration	50
	4.	.4.2 Sequential Calibration	53
	4.	.4.3 Distributed Calibration	56
5	С	Conclusions	58
6	R	References	59

Outline & Progress

White Paper Link

•	Chapter	4	
---	---------	---	--

- Completed section 4.1
 - Honggang Wang (GE)
- Section 4.2 to be completed
 - Kaveri Mahapatra (PNNL)
- Section 4.3 to be completed
 - Kaveri Mahapatra (PNNL)
- Completed section 4.4
 - Honggang Wang (GE)

Target completion by October 2022

1	Introd	uction	1
	1.1	Motivation for Model Validation & Calibration	1
	1.2	Datasets and Data Requirements for Model Validation & Calibration	-
	1.3	Power System Model Validation Overview	4
	1.4	State-of-the-Art Methods and Tools for Model Validation & Calibration	
	1.4.1	Power Plant Parameter Derivation (PPPD)	9
	1.4.2	Power Plant Model Validation Tool (PPMV)	11
	1.4.3	Power Plant Model Validation Simscape Design Solution	13
	1.4.4	Generator Model Validation (GMV)	14
	1.4.5	PhasorAnalytics Dynamic Model Validation & Calibration	10
	1.5	Limitations of Existing Methods and Desired Features of Advanced MVC	17
2	Advar	ced Model Validation	19
	2.1	Enhanced Model Validation Procedure	19
	2.2	Performance Metrics	22
3	Advar	ced Model Calibration	27
	3.1	Advanced Parameter Selection	23
	3.1.1	Trajectory Sensitivity Approach	27
	3.1.2	Global Sensitivity Approach	28
	3.1.3	SVD Based Methods	30
	3.1.4	Similarity Based Methods	32
	3.1.5	Empirical Gramian Based Method	33
	3.2	Advanced Model Parameter Tuning	34
	3.2.1	Estimation Based Approach	34
	3.2	2.1.1 Kalman Filter (KF, EKF, Ensemble)	35
	3.2.2	Optimization Based Approach	38
	3.2	2.2.1 Efficient Trust Region Approach	38
	3.2	2.2.2 Black-Box Optimization Based Approach	39
	3.2	2.2.3 Approximate Bayesian Computation Based Approach	40
	3.2.3	Machine Learning Based Approach	42
	3.2	2.3.1 Q-Learning Based Approach	43
	3.2	2.3.2 Conditional Variational Autoencoder based Approach	45
	3.3	Performance Validation Process and Metrics	47
4	Multip	le Event Based Model Validation & Calibration	48
	4.1	Motivation for Using Multiple Events	48
	4.2	Event Selection	50
	4.3	Aggregation of Performance Metrics Across Multiple Events	50
	4.4	Multiple Event Model Calibration	50
	4.4.1	Simultaneous Calibration	50
	4.4.2	Sequential Calibration	55
	4.4.3	Distributed Calibration	50
5	Conch	isions	58
6 References			

EATT Edge Computing Database

- Create a living document/database for industry on education and real-world applications of Edge Computing applications
- Provide expert knowledge of edge computing common applications based on a foundational definition:
 - Edge computing is computing that is done at or near the source of the data excluding cloud or remote data center computing.
 - Examples
 - Computations on the PMU directly
 - Computations on a substation synchrophasor device/server or on a field device
- Approach
 - Industry survey to collect real-world examples
 - Vendors Commercially available or in development
 - Research institutions What is being researched
 - Utilities What is currently in use (proprietary systems for sharing of information only)
 - Development of edge computing knowledge including:
 - Types of edge computing
 - Hardware, software and network needs