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About DoS *  The data shared over the network is corrupted by
. The communicating servers are jammed with adding bias.

malicious request

. Server becomes unable to respond to legitimate
requests.

. This could cause controllers and operators to

actuate wrong control actions which may cause
closed-loop instability..
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Why is resiliency needed ?
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Our proposed GAN
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* GANs cannot be trained to 100% accuracy
* Instances of anomalous scores.
* Averaging removes anomaly.
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- Attacked links are shown by red lines. - Communication delays are :

- Training data consists of 5000 operating = Intra-area = 30ms, Inter-area = 60ms.
points. = Deviation = +/- 10%
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Fig. 5a : Detection of FDI attack Fig. 5b : Localization of FDI attack
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* It is seen that during a FDI attack, the average * Generator wise reconstruction error is computed
discriminator Pa shows a sudden drop. between received and predicted states.
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The threshold can be e;shmatcepl based on the LGi(t) = H(Xt _ G(Xt)) o QGj |
best score obtained during training phase.
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Fig. 6a : FDI attack causes closed-loop instability
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Conclusions and references

- Neural network-based methods benefit in not requiring the actual model to ensure
resiliency during a cyber-attack.

- Can be implemented in a decentralized manner ensuring model privacy.

- Proposed GAN based method work effectively to both localize and mitigate both FDI and
DoS cyber-attacks.

- Future Work : Large changes in operating points, non-linear controller, IBRs
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