DER Gateway to Support Real-Time Control and Situational Awareness in Distribution Grids
Project Team
Challenge:
 • Cost-effective solutions for smaller DER (<500kVA) are not readily available on the market

Project Objective:
 • Investigate options for making DER more visible to distribution operations and support real-time control
 • Develop a technology solution that addresses the monitoring and controls gap associated with smaller DER (<500kVA)

Specifically, a gateway was developed with the following objectives:
 • Enhance situational awareness and state estimation
 • Employ the same interface to manage DER to enhance grid modernization applications such as
 – Fault location, isolation, and service restoration (FLISR)
 – Voltage and VAR optimization (VVO)
 – Dispatch of DER assets into wholesale markets
DER Gateway Architectures

Cloud-Based Third-Party Aggregator Communications and Control Diagram

Field Message Bus Communications and Control Diagram
DER Gateway Block Diagram and Data Flow

- DER Feeder Aggregator and controller
- Feeder Aggregator Communications Interface
- DER Operation Mode Management
- Agent Based Scheduler (future)
- DER Set point Management
- Decentralized Energy Data Platform (future)
- PMU Processing (future)
- DER Communications Interface
- Sensor Interface (optional)
- DER
- Sensors

Communication
Analog
Internal Data Flow
Test Set up
Overview of Lab Set-up
Laboratory Setup

HP Server

CRIO

Raspberry Pi

RTDS Lab

RTAC
Fishkill Plains Milsoft Model Reduction

- Grouped load and PV into subset of buses, separated by major overhead conductors
- Developed the reduced SLD in RSCAD
- Validate by comparison of load flow in both software
- Shared SLD, excel format of network, and load flow results with V&R Energy for implementation in DSE
Load and PV Profile (Circuit 8093)

Net Load (kW)

2MW PV Generation (kW)
RTDS Model of Test System
Data Flow between RTDS and V&R Energy

- **D-PMU ROSE**
 - CSV
 - CSV

- **cRIO**
 - CSV

- **OpenFMB (DDS)**

- **Next Generation DER Gateway**

- **RTAC**
 - Modbus
 - DNP3

- **RTDS**

Measurements

- C37.118

Set-points
Use Case Testing
Gateway Use Cases

<table>
<thead>
<tr>
<th>#</th>
<th>Application</th>
<th>Use case</th>
<th>Project Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Distribution System Monitoring and Situational Awareness</td>
<td>1.1 Disaggregation of load and DER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 Monitoring of voltage compliance for DER locations</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.3 FLISR enhancement through improved prefault load calculation</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.4 Micro-phasor measurement unit (uPMU) for improved state estimation</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DER Management</td>
<td>2.1 Managed operation of BTM DERs and FTM assets for thermal constraints</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2 BTM DER operation for dispatch</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.3 DER Volt-Var Optimization integration</td>
<td>✔</td>
</tr>
<tr>
<td>3</td>
<td>Market Participation</td>
<td>3.1 Community energy market participation using agent-based controls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.2 Blockchain for local market settlement</td>
<td></td>
</tr>
<tr>
<td>PMU</td>
<td>DSE</td>
<td>Switches</td>
<td>Demo System Operator</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>----------</td>
<td>----------------------</td>
</tr>
<tr>
<td>1- Send PMU data for feeders</td>
<td>1- Send DER generation measurements</td>
<td>3- Send prefault operating topology</td>
<td>4- Simulate fault and isolation</td>
</tr>
<tr>
<td>5- Send PMU data for feeders</td>
<td>5- Send DER generation measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6- Updated system states</td>
<td>7- Simulate the restoration step</td>
</tr>
</tbody>
</table>
FLISR

<table>
<thead>
<tr>
<th>Test Day</th>
<th>Error in estimation of prefault load (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 9, 2020</td>
<td>467</td>
</tr>
<tr>
<td>June 14, 2020</td>
<td>475</td>
</tr>
<tr>
<td>March 5, 2020</td>
<td>473</td>
</tr>
<tr>
<td>March 7, 2020</td>
<td>470</td>
</tr>
</tbody>
</table>

Active Power Measured at Bus 101

![Graph showing active power measured at Bus 101](image)
<table>
<thead>
<tr>
<th>Test Day</th>
<th>Average Incremental Voltage Reduction (%)</th>
<th>Maximum System Voltage (pu)</th>
<th>Minimum System Voltage (pu)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DER Enhanced Case</td>
<td>Base Case</td>
<td>DER Enhanced Case</td>
</tr>
<tr>
<td>22-Jan-20</td>
<td>0.30%</td>
<td>1.06</td>
<td>1.07</td>
</tr>
<tr>
<td>26-Jan-20</td>
<td>0.33%</td>
<td>1.09</td>
<td>1.10</td>
</tr>
<tr>
<td>5-Mar-20</td>
<td>0.13%</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>7-Mar-20</td>
<td>0.19%</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>9-Jun-20</td>
<td>0.17%</td>
<td>1.10</td>
<td>1.11</td>
</tr>
<tr>
<td>14-Jun-20</td>
<td>0.12%</td>
<td>1.09</td>
<td>1.09</td>
</tr>
</tbody>
</table>

Substation Voltage January 22

Reactive Power Output of PV Groups - Jan 22

Voltage at Various Buses for Jan 22
Summary

- DER gateway was successfully implemented in hardware and shown to enhance many distribution applications
- The gateway provides many useful measurements to a hybrid DSE
- Hybrid DSE represents a logical interim step to full DSE before sufficient distribution connected PMUs are deployed for a fully observable system
- The distributed control architecture offers many benefits relative to integration of BTM DER via third-party aggregators cloud interface
- Field demonstration of the concept will be required to better understand field deployment challenges and costs
Thank you!

Join us on LinkedIn and visit our website for live Knowledge Sharing Webinars and more!