DOMINION ENERGY'S
PILOT DEPLOYMENT
AND EVALUATION OF
ENHANCED LINEAR
STATE ESTIMATOR
FOR GRID RESILIENCY

BACKER ABU-JARADEH

APRIL 12, 2022

TODAY'S AGENDA

- eLSE at Dominion Energy
 - Project goals
 - Timeline
 - Key activities
- Visualization and system operation
- Summary & Next Steps
- Q&A

LINEAR STATE ESTIMATION DEPLOYMENT

PROJECT GOALS, HIGHLIGHTS, AND ACTIVITIES

DOMINION'S SYNCHROPHASOR PILOT PROJECT GOALS

- Dominion's primary goal is to deploy LSE to address the following:
 - Detect and Identify bad <u>PMU data quality</u> measurements
 - <u>Isolate bad measurements</u> affecting real-time applications
 - Substitute poor quality and unavailable measurements with <u>model-based estimations</u>
 - Independent platform to serve as a <u>back-up platform to EMS/SE</u>
- In addition, Dominion deployed additional synchrophasor solutions to provide:
 - Real-Time Phase Angle Monitoring
 - System Frequency Response monitoring

PROJECT HIGHLIGHTS

Uses protective relays to stream PMU data	Positive Sequence Data from 128 PMUs				
cover the 500kV transmission system	Data collected from 29 substations				
Observability increased with LSE	Observability increased to 42 substations (out of 44)				
System is fully independent from EMS/SCADA	Breakers and other digitals are directly available from PMUs				
Incorporated zero-injection pseudo measurements	Dynamically evaluates candidate buses for pseudo measurements placement				

PROJECT TIMELINE AND PROGRESS

Visualization building, On Site Training, Project Completion and next steps

solution Delivery,
Deployment & Model
Integration

2022

Project Kick Off, Gap Analysis, Architecture Design

2020

DATA AND MODELS PROVIDED BY DOMINION

- Models used to commission the LSE
 - CIM Network Model
 - One Line Diagrams in Dominion's EMS format
- Data provided by Dominion for commissioning and testing
 - PMU Data from the Dominion's PDC
 - Signals included are Voltage Phasors, Current Phasors, Digitals for breaker/switch statuses, Frequency, DFDT, Status Flags
 - Mapping information to link synchrophasor measurements to CIM model

ACTIVITIES TO DATE

- CIM Model Integration
 - ✓ Integrated with Dominion's CIM Network model format to support LSE
 - ✓ Mapped PMU Measurements to CIM
- Testing and Validation
 - ✓ Commissioned hardware for LSE Deployment at EPG's Lab
 - ✓ Deployed the eLSE using played-back measurements from Dominion's synchrophasor system
- Deployment and Commissioning
 - ✓ Commissioned LSE Platform at Dominion Energy
 - ✓ Working grade LSE now running at Dominion with live data stream
 - ✓ Developed visualization screens with focus on transmission system on geo-spatial maps
 - ✓ Identified bad data issues in Dominion's synchrophasor stream

ELSE PLATFORM AT DOMINION

- PMU Data from Field
- Data Concentration
- Receive Data from PMUs, synchronize data etc.
- Data Conditioning tool
- Linear State Estimation

- Perform MVA Calculations
- Set Alarm limits
- Stream data to downstream applications

- Visualization of Real-Time LSE Results
- Replay data and events
- Trends, Maps, Alarms etc.

LINEAR STATE ESTIMATION ARCHITECTURE

LSE Platform includes: Data quality and model management + Visualization

VISUALIZATION AND SYSTEM OPERATION

OPERATOR DISPLAYS

SYSTEM MONITORING WITH ALARMS AT DOMINION ENERGY

LSE ESTIMATIONS - VOLTAGE MAGNITUDE AT 500 KV SUBSTATION

LSE ESTIMATIONS - CURRENT MAGNITUDE AT 500 KV SUBSTATION

FREQUENCY MONITORING AT DOMINION ENERGY

PHASE ANGLE MONITORING AT DOMINION ENERGY

LSE CALCULATIONS - POWER FLOW

CALCULATED MVA FROM ESTIMATED REAL AND REACTIVE POWER

SUBSTATION DIAGRAMS – AUTO-CONVERSION

- Color-coded visualization of PMU data side-by-side with eLSE estimations
- Ability to display measurements from PMU.
 (voltages, currents, phase angles, power, etc.)
- Ability to display digital values (breaker status, switches, etc.)
- Ability to change element properties based on Signal Values

LSE PERFORMANCE REPORTS

Real Time Information about the following metrics:

- Model Summary Number of Observable Islands, Observable Buses, Branches, Breakers, Switches etc.
- Island Observability Substations in each island at specific voltage level with measured or estimated observability
- Island Signals- Signals in each island with substation name and Node/Line name
- Breaker Status Change Track Breaker Status changes in real-time
- Measurement Status Change Report any status changes in each measurements

0	del Summary Isla	nd Observability Isl	and Signals	Breaker	Status Char	nges	Measurement Stat	tus Changes				
	Observable Islands	Observable Buses	Branches	Breakers	Switches	Nodes	Line Segments	Series Compensators	Shunt Compensators	Transformers	Transmission Lines	Mapped PMU Signals
L	Island A	41	49	261	480	727	49	0	11	0	49	176
2	Island B	1	0	4	4	9	0	0	0	0	0	1

SUMMARY & NEXT STEPS

ELSE DEPLOYMENT AT DOMINION SUMMARY

- EPG's eLSE have been successfully installed and commissioned at Dominion Energy
- Application has detected and identified bad quality PMU measurements
- Observability of substations have increased from 29 to 42 substations
- MVA values for individual lines have been calculated from estimated real and reactive power values and proper alarm thresholds are established
- Frequency and Phase angle monitoring have been configured
- LSE Performance Reports have been commissioned to better assess the model summary
- Zero Bus Injections have been properly mapped in the model and commissioned
- System overview diagrams representing the 500kV have been commissioned
- Substation level One Line Diagrams are being deployed with proper mapping of measured and estimated values

PILOT NEXT STEPS

- The following items remain open and to be completed:
 - Integrate breaker statuses from PMU measurements
 - Generate substation one-line diagrams for visualization of all 500kV substations
 - Map measurements/estimations to one-lines
- Gather feedback from operators on user-interfaces, and use-cases.

ON THE HORIZON....

- EPG is working on a next-generation LSE-based platform to provide full Real-Time Assessment capability through:
 - On-demand and periodic powerflow solution capability
 - State Estimator base case generation for downstream advanced applications
 - Real-time Study Capability for "What-if" assessments
 - Full and seamless integration with Real-Time Contingency Analysis

DISCUSSION AND Q&A

Thank You

251 S. Lake Ave., Suite 300 Pasadena, CA 91101 626.685.2015 www.electricpowergroup.com