WHEN TRUST MATTERS

WAMS Applications for The Control Room of The Future using the Next Generation Grid Operations Framework

DNV Energy Systems

DNV

Lino Prka, Jan Vit Suntar 12 April 2022

Agenda

- Next Generation Grid Operations (NextGen GridOps) Framework Introduction
 - Future system operations
 - Building a machine
 - Modular architecture
- WAMS and NextGen GridOps Framework
 - Knowledge Preservation
 - Applications
- Q&A

Next Generation Grid Operations (NextGen GridOps Framework) Introduction

System Operations are becoming more COMPLEX and DEMANDING

Smart cost-efficient strategy in dealing with increasing grid ops complexities

- New market & system requirements
- Integrate to existing + new applications
- Real time performance + response
- RT data integration + exchange (data model)
- Data quality + compatible data sets
- Project realization time + budget

Building the Next Generation Grid Operations Machine

CIMbion Automated Data Testing

BUILDING the MACHINE Migrate to the NEW DIGITAL GRID OPERATIONS MODEL

How to MIGRATE to – steps to define

A modular, flexible and secure architecture allows high interoperability enabling interaction between different applications & departments

- High interoperability allows data to be shared and new business functions to be introduced
- Clear segregation between corporate network (which contains most users & applications) and technology & control networks
- Applications in the control network should be able to operate when other networks fail
- Applications in the corporate network aren't able to directly influence applications in the control network (only information provisioning)
- Applications communicate with each other via an integration layer, unless very specifically approved. In principle there are **no point-topoint connections** between applications
- Any data shared between networks flows via integration layers, incl. security principles

Our understanding – creating more value with data in increasing grid complexity with many stakeholders and renewable energy integration

Core KPI

Existing challenges & opportunities

Strategic priorities

Security of Supply

Quality of Supply

Safety

TCO

Regulation & compliancy

Public image

Sustainability

Data & process standardisation required to reduce complexity with many stakeholders

Improved interoperability required between the different solutions and new renewables to improve existing monitoring & control functions and to allow (real-time) calculations & simulations

Improved data quality to allow better (automated) decision-making

New digital technology to be infused in the core processes of the company

Improved grid development and resiliency improvement

Creating value with WAMPAC

WAMS and NextGen GridOps Framework

WAMS Practical Examples

Modelling of Business Processes by Using BPMN 2.0 in Enterprise Architect

Definition of information implementation process by using ArchiMate 3.0 in Enterprise Architect

- Definition of Roadmaps
- Using information for practical examples

Example process flow:

- Clear business processes for WAMPAC,
- including its integration with peripheral systems.

WAMPAC Applications diagram

Process of Information Implementation

Rotor Angle Stability – Framework Implementation

Rotor Angle Stability – Framework Implementation

14

DNV ©

Application of WAMS Information from NextGen GridOps Framework

- Context:
 - Case Study IEEE 39 Bus New England Test System
 - Direct Voltage Control receives a remote signal
 - The remote signal fed to the controller is voltage magnitude (due to the previously developed structure of DVC)
 - The controllability was evaluated by studying damping of critical modes of oscillation
 - Deployment of 3 PMUs and 3 WADs was considered in this project
 - Evaluation of observability and controllability of the system
 - Input / output signal selection method

Study System and WAMS Structure

Input / Output Signal Selection Method

Case Study IEEE 39 Bus New England Test System WAMS with 2 Synchronous Generators and 8 DVC

SETUP

- 2 synchronous generators
- 8 Direct Voltage Controllers
 - > 3 Damping Controllers → WAD
- > 3 Voltage measurements → PMU

Power Plant	Bus	ΟΙ	Power Plant	Bus	CI
Power Plant 5	Bus 34	1	Power Plant 7	Bus 36	1
Power Plant 7	Bus 36	0.988	Power Plant 6	Bus 35	0.950
Power Plant 4	Bus 33	0.982	Power Plant 4	Bus 33	0.906

Modes	Eigenvalue	Damped Frequency		Damping Ratio		With WADC	
Mode 1	-0.509 ± j 6.021 -0 481 + j 6 107	0.958	0.972	8.40 %	7.90 %		WADC
Mode 2	-2.491 ± j 8.488	1.351	1.433	28.2 %	35.6 %		
Mode 3	-3.428 ± j 9.006	1 058	1 057	60.3 %	60.9 %		
	-9.372 ± j 12.22	1.300	1.307	00.0 /0	00.9 /0		

Concluding Words

- Next Generation Grid Operations (NextGen GridOps) Framework was developed to support defining and designing the Grid Operations Machine with real-time data exchange between different applications and by different vendors.
- The Grid Operations Machine is based on an integrated system architecture without point-topoint connections between applications, deploying a service-oriented architecture instead.
- The NextGen GridOps Framework is structured in Enterprise Architect according to latest standards and its modular structure allows speedy redeployment of previously implemented solutions.
- Deploying the framework will help strengthen the confidence of grid operators in the future to come through better; being able to manage the ever-increasing complexity of the power grids and renewable generation and better enhancing their situational awareness operating the energy system.

Questions?

WHEN TRUST MATTERS

Contact Information

Lino Prka Jan Vit Suntar

Lino.Prka@dnv.com Janvit.Suntar@dnv.com

www.dnv.com

DNV © 12 APRIL 2022

DNV