Oscillation Damping Control via Inverter Based Resources (IBR)

Evangelos Farantatos Lin Zhu Deepak Ramasubramanian **EPRI**

Yi Zhao Yilu Liu **University of Tennessee Knoxville**

NASPI Workshop "Monitoring, Analysis and Mitigation of Oscillations and Inverter Based Resource Impacts"

April 11, 2022

Outline

- Background
- Forced Oscillation Control via IBRs
- Damping of Low Frequency and Sub-Synchronous Oscillations Using HVDC
- IBR Power Oscillation Damping

Oscillations Events

Low Frequency Oscillations

Sub-Synchronous Oscillations

 Inverter controls might create subsynchronous oscillations (typically 5.0-15.0 Hz) due to control interactions and/or network resonance

PV Plant – ~7 Hz Oscillation

First Solar Inc., "Deploying utility-scale pv power plants in weak grids," in 2017 IEEE Power & Energy Society General Meeting, Jul. 2017.

Synchrophasor Technology for Oscillations Monitoring & Control

Forced Oscillation Control via IBRs

Forced Oscillations Mitigation

- 1. Forced oscillation source location
- 2. Use of Inverter-Based Resources (e.g., Battery Energy Storage Systems) to suppress magnitude of forced oscillations

Forced Oscillation Mitigation Using IBRs

- Controller to reduce energy of oscillations
 - Actuator: IBR
 - Input: Frequency deviation of a HV bus close to the IBR
 - Output: Modulation signal of IBR active current/power
 - Controller:
 - Droop control
 - Forced oscillation detector
- Simulation implementation using WECC IBR models
- Active power control of the IBR electrical control model (REEC_X)

BESS model with forced oscillation control

Replication of Jan. 11, 2019 El Forced Oscillation Event

- 70k-bus EI model was used
 - Fast valving feature of the TGOV3 model used to replicate the event
 - Initiate fast valve every 4 seconds

TGOV3 governor model with fast valving feature

Generator Electrical Power

Bus frequency deviation in Florida (red, ~110 mHz peak-to-peak), ISO-NE (blue) and MISO (black)

Simulation Results in El 70k-Bus Model

- Forced Oscillation Source: Generator in Florida
- Actuator: BESS in Florida
- Scenarios
 - Case 1: No Control (Jan. 11, 2019 event)
 - Case 2: With Control, one 409 MW BESS
 - Case 3: With Control, 12 distributed 35 MW BESSs

Simulation Results in El 70k-Bus Model

Damping of Low Frequency and Sub-Synchronous Oscillations Using HVDC

Great Britain Power Grid Model

- Project with the National HVDC Centre, Great Britain
 - Scope: Develop Power Oscillation Damping (POD)
 controllers to mitigate low frequency inter-area
 oscillations & local sub-synchronous oscillations
- Reduced 36-zone GB grid model in PowerFactory
 - Representing renewable dominated grid
 - Target oscillation mode: North-South (~0.88Hz, 3.27%)
 - Input signal: Bus frequency between north and south
 - Actuator: VSC-HVDC links

HVDC	Terminal 1	Terminal 2	Туре
W.Coast	Z19	Z28	LCC-HVDC
W.Coast 2	Z22	Z27W	VSC-HVDC
W.Coast 3	Z28	Z32	VSC-HVDC
E.Coast	Z25	Z27E	VSC-HVDC
E.Coast 2	Z24	Z33	VSC-HVDC

Zone map of GB power grid Map source: The National HVDC Centre

Low Frequency Oscillations - Demonstrating Results - PowerFactory

PODs on VSC-HVDC links by P, Q, and P&Q modulation

POD for Sub-Synchronous Oscillation

- Wind model with explicit representation of PLL and inner current control loops
- The parameters of the inner current control loop controller, outer voltage controller, and PLL were "mistuned" to produce SSO with frequency around 10Hz
- W.Coast 3 HVDC was used as the actuator to suppress SSO

Sub-Synchronous Oscillations - Demonstrating Results - PowerFactory

- Sub-synchronous oscillations (SSO) caused by the interaction between renewable resource control and power network
- POD can suppress both natural oscillations and SSO

IBR Power Oscillation Damping

IBR Power Oscillations Damper

- Objective: IBRs providing oscillations damping control similar to synchronous generators with PSS
- Local control
- P or Q control

WECC Generic IBR Model

IBR POD Proposed Model

- IBR POD Control Blocks:
 - Washout
 - Filter
 - Two Lead-Lag
 - Gain
- POD output can be added to the Paux signal (e.g., REECCU1) for P modulation or the Vbias signal (e.g., REECA1) for Q modulation

Freq. 1

Freq. 2

WECC REEC_A Model

IBR POD – Test System

Kundur 2 area system with one generator replaced by an IBR
POD model implemented in PSS/E and PSLF

IBR POD – Demonstrating Results

P Modulation

(0) (0)

IBR POD stabilizes the system with either P or Q modulation

Q Modulation

IBR POD vs WADC - ERCOT 2k Bus Model

WADC control: feedback signal f_{zone4}-f_{zone7}

Local POD control: Inverter frequency measurement

EPRI

Together...Shaping the Future of Energy™