IBR Oscillations in the Dominion Energy System

Chetan Mishra, Chen Wang, Luigi Vanfretti, Kevin Jones

Changing Grid and Stability Issues

- For traditional power systems, stability is mainly about how tightly coupled are the synchronous machines
 - Not been an issue for Dominion (500 kV backbone)
- Emerging control related issues (mostly black box/unmodeled dynamics !)

Unstable Voltage Controller at Transmission Solar

Why Data Driven Analysis ? (Modeling Challenges)

- Power industry heavily relies on models for planning and even control specifications
 - Traditional generator and associated control models are well understood
 - BUT not all internal components are modeled in PSS\E ! Loss of information !
- Detailed dynamic load models are hard to build and/or validate
 - Require events happening everywhere, at multiple times
 - Are the generic models actually useful ?

Unmodeled 40 Hz Excitation Dynamics from Hydro

Modeling Challenges

• Models for real-world FACTS

- Black box models in EMT software
- Controller replica in RTDS (black box)
- Not always updated with device changes
- Inaccurate representation of rest of the system
- Renewable Gen Models
 - Usually not available
 - Generic models rarely help with troubleshooting
 - Complicated by protection
 - Short term uncertainty is not modeled in system dynamic models

Typical Solar Output

Research Problem

- Goal: Inferring Dynamic Behavior from Measurements
- Motivation
 - Identifying problematic controllers that models fail to capture
 - Address emerging issues before they become widespread
 - Gaining intelligence on operation and planning in the "new grid"
 - Tuning pre-existing models
 - Augmenting models with new information

5

Example Problem

- In Feb 2019, opening of line C-D triggered Digital Fault Recorder (DFR) alarms due to Harmonic Distortion
 - Stopped on reconnecting
- Source(s) ?
- Was the issue always there ?
 - If yes, when does it flare up ?

Identification of Oscillations from Solar Inverter

March 24, 2022

Introduction

- Randomly encountered an 8 Hz oscillation when analyzing industrial load dynamics at another location
- Observable everyday only during daytime
 - Correlating it with the time of sunrise and sunset was the only clue to identifying its nature...Solar PV !

System Wide Spectrum

Signal Selection

- Mode was observed in voltages at most substations
- Observed in currents at only a few
 - Most solar PVs operate in PQ mode and not PV
 - In IBRs, current is regulated making it a poor observer
- Goal was to locate the source as well as understand how widespread the impact is
 - Voltage magnitude chosen for analysis

Single or Multiple Modes ?

- Multiple modes at nearly same frequencies are fairly common,
 - Devices coming from same manufacturer
 - Connected in similar regions

Multiplicity and Shape using Frequency Domain Decomposition

• Power spectral density matrix $S_{yy}(\omega)$ of outputs of a MIMO linear time invariant system can be written as,

 $S_{yy}(\omega) = G(j\omega)S_{uu}(\omega)G^{H}(j\omega)$

- $G(j\omega)$ is the transfer function and $S_{uu}(\omega)$ is the PSD matrix of inputs
- Rank of $S_{yy}(\omega)$ gives insight into number of strongly observed + excited modes at ω
 - Singular values give the scaled PSD of underlying modes
 - Singular vectors of S_{yy} can give the mode shapes of those modes (iff they are orthogonal in shape)

Regional Mode Shape

- Source in region with high PV density
- Best observed in 1 substation with 75 MW PV

Verification Using Point of Wave (PoW) Data

Introduction

- Important to verify results using PoW data for power electronic equipment
 - Infeasible to conduct entire analysis with PoW data – storage challenges + a lot of irrelevant information content
- Need to map PoW observations to relevant observations in PMU data
- In Dominion System, digital fault recorders (DFRs) sample point on wave data at 4800 Hz, which is filtered + downsampled to 960 Hz for phasor estimation
 - Temporarily stored at the substation
 - Can be collected on demand, however network bottleneck

Typical PoW

Information in PoW Data

- System operating around 60 Hz
 - Think of it as carrier wave for traditional power system dynamics
- Dynamics encoded into the carrier signal through modulation (governed by device physics)
- Other dynamics (not modulated) also present e.g. harmonics from converter, arc furnace

Typical POW Data Spectrum

Energy

Demodulation (Recovering Phasor)

• Modulated signal,

 $x(t) = real(A(t)e^{j(2\pi f_c t + \theta(t))})$

• Hilbert Transform derives a complex valued signal,

$$x_{c}(t) = x(t) + jy(t) = a(t)e^{j\phi(t)}$$

s.t. $Y(\omega) = -jX(\omega) \rightarrow -\frac{\pi}{2}$ shift

• Achieved by convolving x(t) with $\frac{1}{\pi t}$

22 Hz not 8 Hz

Aliasing

- PMU reporting rate is 60 Hz, Dominion down samples to 30 Hz to optimize storage
- Nyquist theorem Sample at least twice the maximum frequency component

$$PSD\left(\frac{\omega_{s}}{2} + \Delta\omega\right) = \left|X(\frac{\omega_{s}}{2} + \Delta\omega)\right|^{2}$$
$$= \left|\sum_{k} x\left(\frac{2\pi k}{\omega_{s}}\right)e^{j2\pi\frac{\omega_{s}}{2} + \Delta\omega}}{k}\right|^{2} = \left|\sum_{k} x\left(\frac{2\pi k}{\omega_{s}}\right)e^{j(\pi + \frac{\Delta\omega}{\omega_{s}})k}\right|^{2}$$
$$= \left|\sum_{k} x\left(\frac{2\pi k}{\omega_{s}}\right)e^{j(\pi - \frac{\Delta\omega}{\omega_{s}})k}\right|^{2} **$$

Energy®

** $|a\cos(\theta) + 1j a\sin(\theta)|^2 = |a\cos(\theta) - 1j a\sin(\theta)|^2$

Changing Controller Behavior

2 March 24, 202

8 Hz Activity

- Usually, only a single mode at 8 Hz during daytime
- On certain days, 2 modes are observed around 8 Hz
 - Day time mode, nearly fixed frequency (similar to above)
 - 24 Hr mode, frequency varies around 8 Hz

Changes in Voltage Magnitude Spectrogram at Identified Source

Mode Shape of Daytime vs 24 Hr Mode (Dec 2, 2020, Similar Energy Modes)

Spectrum vs PQ Output of Solar Plant

- Most PVs at Dominion are operated in PQ mode with separate V control
 - There are several other auxiliary controls inside converter e.g. negative sequence current control
- Hypothesis Daytime mode likely from PQ control, only active during significant irradiance
- Online tests to further understand the nature of the oscillations

Key Takeaways

- Transparent models for IBRs are usually unavailable, need to rely on data driven analysis (often the only choice)
- Regardless of the magnitude of the issue, need to prepare for the changing grid
- Analyzing the operating cycle (hourly, daily, seasonal) can help in identifying the nature of the source
 - Events provide an incomplete picture
 - Ambient data is important for inference
- In the present case, IBR oscillations emerged from a PV rich area
- Nearly identical IBRs from the same manufacturer can give rise to mode multiplicity
 - Careful analysis is required
- Difficult to analyze non-stationary modes (recall flathead)
- Sometimes, harmless processing of the data (down sampling in this case) can lead to wrong conclusions
 - Need to very against measurements available in the purest form (point on wave)

Thank You !

