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Small Signal Stability

 Oscillations must remain well-damped for 
small-signal stability

 Either sustained oscillations or growing 
oscillations called small-signal instability

 Caused by unusual operating conditions or 
poor control designs

 Some eigenvalues become negatively damped 
resulting in small signal instability

 IBRs influencing grid dynamics and can cause 
subsynchronous oscillations
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Pendulum Example

Negative damping

Growing oscillations

Positive damping

Oscillations damp out
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Oscillations Terminology

• Oscillations: Unintentional periodic exchange 
of energy across power system components

• Damped Oscillations
 Well-damped or poorly damped?

• Undamped oscillations
 Problematic, Causes rotor fatigue, Power 

quality issues, blackout
 Forced Oscillations: Can interfere with 

system modes, interarea resonance
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Well-damped oscillations

Powerworld Animation© Washington State University



Well-damped Response

Recent 
WECC 
Event
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Poorly Damped Oscillations
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Poorly Damped Oscillations
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Local oscillations

Powerworld Animation© Washington State University
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Sustained oscillations
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1 Hz Governor oscillations caused by a faulty valve
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Inter-Area Oscillations

Powerworld Animation© Washington State University



Power System Dynamics
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Subsynchronous Oscillations
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Linearization

System stability model
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Small-signal model



Modal Response

Eigenvalue or Mode λi = -αi + j βi

−αi

βi

−βi

ωni

Modal time-response
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Mode damping ratio = αi / ωni

How fast does it damp out?
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Mode frequency = βi / 2π



Modal Analysis

• Thousands of oscillatory modes in a power 
system

• Damping ratio of every mode should be above 
5% or 0.05

• Well-damped mode responses “not seen”
• Damping from 0% to 5% gives poorly damped 

oscillatory responses
• Damping below 0% results in growing or 

undamped oscillations
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Modal Properties

• Eigenvalue or Mode λi = -αi + j βi• Mode frequency 
• Mode damping ratio

• Mode shape – which generators are swinging 
and how? (right eigenvector)
- local mode (one generator/plant)
- intra-area mode (several generators in one 
control area)
- inter-area mode (generators across many 
control areas)
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Well-known WECC modes

• 0.25 Hz North-South inter-area mode

• 0.37 Hz North-South inter-area mode
• Eastern interconnection, 0.25 Hz, 0.4 Hz,             

0.5 Hz, 0.6 Hz, 0.7 Hz, …
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August 10, 1996 blackout

Northwest
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COI 
lines
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Inter-area mode
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Measurement Based Analysis

Event Modal 
Analysis

0.4 Hz at +10% damping. Inter-Area Mode.

Ambient Modal Analysis

0.4 Hz at +10% damping. Inter-Area Mode.
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Oscillation Monitoring System

OpenPDC
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OMS action adapters built into OpenPDC platform.
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Complementary Engines

 Event Analysis Engine (EAE)
◦ Multiple algorithms
◦ Prony, Matrix Pencil, HTLS, ERA, MFRA, METRA.
◦ Aimed at events resulting in sudden changes in 

damping
 Damping Monitor Engine (DME)
◦ Ambient noise based. Continuous. Provides early 

warning on poorly damped modes.
◦ Several algorithms 
◦ Fast Frequency Domain Decomposition (FFDD), 

Fast Stochastic Subspace Identification (FSSI), 
DFDO, Recursive Adaptive Stochastic Subspace 
Identification (RASSI), DFDD, RFDD, DRSSI, WSD
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Ambient Modal Analysis

 Ambient noise based. Continuous. Tracks 
damping of modes online.

 Provides early warning on poorly damped modes.
 Time-domain algorithms:
 Fast Stochastic Subspace Identification (FSSI-Covariance)

 Frequency-domain algorithms:
 Fast Frequency Domain Decomposition (FFDD)
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Mathematical Model

• Power system is a high-order nonlinear time-invariant 
system

• However, for small perturbations, power system can be 
modeled as a Linear Time-Invariant (LTI) system for short 
periods of time

Power System 
modeled as 
LTI system

Random load 
variations 

modeled as 
white noise

Measured 
outputs, e.g. 

voltage 
magnitudes 
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August 10, 1996 WECC Event 
Modal Estimates from PMUs

Event 
Analysis

1.2 Hz at +1.5% damping. Local Mode.

SSI 
analysis:

0.25 Hz COI 
mode 

damping 
moved from 
positive to 
negative
as event 

progressed.
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Event (Ringdown) Analysis 
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Oscillation frequencies? Damping ratios? Mode shapes? 
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Mathematical Model

• The response after small disturbances can be expressed as the sum of 
exponential terms

 Transfer function

 Impulse response

 Sampling at constant period
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Ringdown Analysis

• Algorithms for ringdown event analysis

 Prony’s Method 

 Matrix Pencil Method 

 Hankel Total Least Square (HTLS)

 Eigenvalue Realization Algorithm (ERA)

 MFRA, METRA
• To verify linearity, crosscheck results from 

multiple engines and multiple time-windows.
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June 17, 2016 Oscillation Event
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0.28 Hz Oscillation Shape
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FFDD Power Spectrum @ 3:01 AM (Before)
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Power Spectrum @ 3:15 AM (During)
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FSSI Estimates During Event (3:13 to 3:17)
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0.3 Hz North-South Mode from FFDD
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0.28 Hz Oscillation Mode Shape
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Resonance with Inter-area Mode

Resonance effect high when:
(R1) Forced Osc freq near System Mode freq
(R2) System Mode poorly damped
(R3) Forced Oscillation location near distant ends (strong 
participation) of the System Mode
Resonance effect medium when some conditions hold
Resonance effect small when none of the conditions holds

S. A. N. Sarmadi and V. Venkatasubramanian, "Inter-Area Resonance in Power Systems From Forced 
Oscillations," in IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 378-386, Jan. 2016.
S. A. Nezam Sarmadi, V. Venkatasubramanian and A. Salazar, "Analysis of November 29, 2005 
Western American Oscillation Event," in IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 
5210-5211, Nov. 2016.
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Modal Amplification Factors

𝐴𝐴𝑖𝑖 =
�𝐰𝐰𝒊𝒊
𝐓𝐓𝐛𝐛

𝛼𝛼𝑖𝑖
2 + 𝜔𝜔 − 𝛽𝛽𝑖𝑖 2

 �𝐰𝐰𝒊𝒊
𝐓𝐓𝐛𝐛 ⇒ Strong controllability (R3)

 𝜔𝜔 ≈ 𝛽𝛽𝑖𝑖 ⇒ Close frequencies (R1)
 𝛼𝛼𝑖𝑖 small ⇒ Poor damping (R2)

41© Washington State University

Y. Zhi and V. Venkatasubramanian, "Interaction of Forced Oscillation With Multiple 
System Modes," IEEE Trans. Power Systems, vol. 36, no. 1, pp. 518-520, Jan. 2021.



Resonance Conditions

(R1) Forced Osc freq near System Mode freq (close)
• 0.28 Hz Oscillation versus 0.3 Hz Mode 

(R2) System Mode poorly damped (invalid)
• 0.3 Hz Well-damped (10% Damping Ratio)

(R3) Forced Osc location near the two distant ends (strong 
participation) of the System Mode (true)

• Mississippi Sensitive Location for the Mode
Only 1+ conditions valid: Resonance effect small.
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June 17, 2016 Event Summary

• 0.3 Hz Eastern Interconnection Mode has a 
complex mode shape: North-South-East-West

• Oscillation source in Mississippi was a 
sensitive location for the 0.3 Hz Mode

• Oscillation frequency 0.28 Hz slightly off
• 0.3 Hz System mode well-damped (excellent)
• Resonance effect was mild
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Research Questions

• How to distinguish between forced responses 
and natural responses?

• Source of forced oscillations?
• Subsynchronous oscillations (SSO) from 

power electronic controls? Resonance?
• Mitigatory operator/control actions for low 

damping conditions and forced oscillations?
• Impact of renewables on inter-area modes?
• Synchronized point-on-wave measurements

44© Washington State University
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