

Cross Power Spectral Density based Approach for Locating Oscillations in Power Systems using Phasor Measurements

Denis Osipov Rensselaer Polytechnic Institute October 7, 2021

In collaboration with Stavros Konstantinopoulos (RPI), Joe. H. Chow (RPI)

Northeastern

Rensselaer TUSKEGEE

Voltage Angle Preprocessing

Dynamic Component Extraction by Quasi-steady State Removal

Intrinsic Mode Functions

Power Transfer on a Lossless Line

Voltage at the beginning of the branch: $\overline{V}_1 = V_1 \angle \theta_1$

Voltage at the end of the branch: $\overline{V}_2 = V_2 \angle \theta_2$

Branch current: $\overline{I} = \frac{\overline{V}_1 - \overline{V}_2}{jX}$

Complex power: $\overline{S} = \overline{V}_1 \overline{I}^*$

$$\bar{S} = \bar{V}_1 \bar{I}^* = \frac{\bar{V}_1 (\bar{V}_1^* - \bar{V}_2^*)}{-jX} = \frac{j(V_1^2 - \bar{V}_1 \bar{V}_2^*)}{X} = \frac{j\left(V_1^2 - V_1 V_2 \left(\cos(\theta_1 - \theta_2) + j\sin(\theta_1 - \theta_2)\right)\right)}{X}$$

$$P = \frac{V_1 V_2 \sin(\theta_1 - \theta_2)}{X} \approx \frac{V_2}{X} V_1 (\theta_1 - \theta_2)$$

$$Q = \frac{V_1^2 - V_1 V_2 \cos(\theta_1 - \theta_2)}{X} \approx \frac{V_1 - V_2}{X} V_1$$

Cross-correlation

$$P = \frac{V_2}{X} V_1(\theta_1 - \theta_2) \qquad \qquad Q = \frac{V_1 - V_2}{X} V_1$$

 V_1 and θ_1 are considered to be the inputs; P and Q are considered to be the outputs

Output leads input \rightarrow source of forced oscillation at the beginning of the branch

Input-output relationship \rightarrow input-output cross-correlation \rightarrow input-output cross-power spectral density (CPSD):

Energy in Increment

Input-output relationship \rightarrow energy function:

$$E = \int_{u_0}^{u} y(t) du(t)$$

Energy in increment:

$$W = \int_{\Delta u_0}^{\Delta u} \Delta y(t) d\Delta u(t)$$

where $\Delta y = y - y_s$, $\Delta u = u - u_s$, y_s and u_s are the output and input trajectories corresponding to quasi-steady state.

CPSD Energy in increment Dissipating Energy

$$S_{\theta P} = \overline{\mathcal{F}\{\theta\}} \mathcal{F}\{P\} \rightarrow \qquad W_{\theta P} = \int_{\Delta \theta_0}^{\Delta \theta} \Delta P(t) d\Delta \theta(t) \qquad W_D = \int 2\pi \Delta P(t) \Delta f(t) dt$$

 $S_{VQ} = \overline{\mathcal{F}\{V\}} \mathcal{F}\{Q\} \rightarrow \qquad W_{VQ} = \int_{\Delta V_0}^{\Delta \theta_0} \Delta Q(t) d\Delta V(t) \qquad + \int \Delta Q(t) d(\Delta \ln V(t))$
CURENT $S_{VP} = \overline{\mathcal{F}\{V\}} \mathcal{F}\{P\} \rightarrow \qquad W_{VP} = \int_{\Delta V_0}^{\Delta V} \Delta P(t) d\Delta V(t)$

Type of source: compare power spectral density of active and reactive power

 $\max(|S_P|) > \max(|S_O|) \rightarrow$ generator governor, cyclic load, sending HVDC terminal

 $\max(|S_P|) < \max(|S_Q|)$ or $\max(|S_P|) \approx \max(|S_Q|) \rightarrow$ generator excitation system, receiving HVDC terminal

Source location: the branch with the largest imaginary part of CPSD:

- radial topology: source is identified
- ring or meshed topology: bus with the largest total CPSD outflow is the source

OSL Contest. Case 7

 $\max(|S_P|) = 144 < \max(|S_Q|) = 348 \rightarrow \text{excitation system of generators 2634-C}$

Compass plots

OSL Contest. Case 9

- 1. Governor of generator 6533-C, 6533-G, or 6533-H
- 2. Excitation system of generator 4131-H or 4131-B

OSL Contest. Case 3

 $\max(|S_P|) = 267 < \max(|S_Q|) = 436 \rightarrow \text{excitation system of generators 1131-C or 1131-G}$

Performance Summary

Case	Frequency	Area	Bus	Asset Type	Controller
1	\checkmark	✓	✓	✓	✓
2	\checkmark	✓	✓	✓	✓
3	\checkmark	✓	✓	✓	✓
4	\checkmark	~	✓ 1 of 3 listed buses was correct	~	~
5	\checkmark	✓	✓	✓	✓
6	\checkmark	✓	✓	✓	✓
7	\checkmark	✓	✓	✓	✓
8	\checkmark	✓	✓	✓	✓
9	\checkmark	✓	✓	✓	✓
	\checkmark	✓	✓	✓	✓
10	not analyzed, assumed to be a higher order harmonic component				
	\checkmark	✓	✓	✓	✓
11	\checkmark	✓	✓	✓	✓
12	\checkmark	✓	✓	✓	✓
13	the sending side of HVDC was detected but not submitted as a separate item				
	\checkmark	✓	✓	✓	✓
CURENT					

Conclusions

Advantages of the approach:

- requires only topological information
- does not require band-pass filtering
- can accurately identify the type of the source
- performs well when active power consumed by loads depends on voltage magnitude
- can identify the location of the source when the frequency of the oscillation is very low

Disadvantages of the approach:

- long window of data is required for good frequency resolution

Acknowledgements

This work was supported primarily by the ERC Program of the National Science Foundation and DOE under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

Other US government and industrial sponsors of CURENT research are also gratefully acknowledged.

