

IEEE/NASPI Oscillation Source Location Contest

October 7, 2021

Jim Follum, PNNL Slava Maslennikov, ISO-NE Evangelos Farantatos, EPRI

PNNL is operated by Battelle for the U.S. Department of Energy

PNNL-SA-167027

Panel Overview

- Oscillation analysis is one of the highest-value synchrophasor applications
- IEEE teamed with NASPI to host a contest for oscillation source location methods based on synthetic PMU data
- Top three performers will present their approaches:
 - Third place:
 - Team FIUBA, University of Buenos Aires
 - Pablo Gill Estevez, Pablo Marchi, Cecilia Galarza
 - First place (tie):
 - Team Woodpecker, General Electric
 - Honggang Wang, Shaopeng Liu, Gang Zheng
 - First place (tie):
 - > Team RPI, Rensselaer Polytechnic Institute
 - Denis Osipov, Stavros Konstantinopoulos, Joe H. Chow

⁻ applications ce location

Problem Overview

- Forced oscillations occur when a piece of equipment injects a periodic disturbance into the power system
 - Example: January 11, 2019 forced oscillation event in the US Eastern Interconnection
 - Combined cycle power plant in Florida experienced a faulty input to a control system
 - Oscillations persisted across interconnection for approximately 18 minutes
 - Plant operator removed unit from service in response to control room alarms

Problem Overview

- Forced oscillations occur when a piece of equipment injects a periodic disturbance into the power system
 - Example: January 11, 2019 forced oscillation event in the US Eastern Interconnection
 - Combined cycle power plant in Florida experienced a faulty input to a control system
 - Oscillations persisted across interconnection for approximately 18 minutes
 - Plant operator removed unit from service in response to control room alarms
- Response times can be reduced with oscillation source location tools
 - Once responsible equipment is identified, corrective action can be taken
- Source location is a challenging problem
 - Amplitude not always largest at the source
 - Sources are varied
- Many solutions have been proposed

Contest Overview

- Objectives
 - Help academia and vendors further develop and improve source localization tools
 - Help utilities identify and evaluate tools for practical use
- Joint effort by IEEE's Oscillation Source Location Task Force (OSL-TF) and NASPI
- Participation: 60 sign-ups, 21 submissions
- Special thanks
 - Contest coordinator: Frankie Zhang (ISO New England)
 - Web support: Kai Sun (UTK), Teresa Carlon (PNNL)
 - WECC-240 bus base case: Jin Tan and the rest of the NREL team
 - TSAT simulation technical and license support: Powertech Labs

(OSI - TF) and

Contest Committee

Ning Zhou (Binghampton Uni.)

Jim Follum (PNNL)

Athula Rajapakse (Uni. of Manitoba)

Slava Maslennikov (ISO-NE)

Mani Venkatasubramanian (WSU)

Evangelos Farantatos (EPRI)

Bin Wang (NREL)

Jeff Bloemink (Powertech Labs)

Philosophy for Creation of Simulated Cases

- Realism
 - Mix of local and interarea natural oscillations
 - Realistic modeling of all system components including "colored noise"
 - Synthetic PMU measurements by time-domain simulation
 - > Partial system observability by PMUs
 - \rightarrow P/M PMU class mix; missed samples
- Properties of FO:
 - Source located at Generator (Governor & Exciter), Load, HVDC
 - Variable magnitude and frequency
 - Obfuscated onset
 - Multiple sources; resonance with natural modes
 - Harmonics
 - Strong interaction with controls
- Avoid bias for any known source locating method

7

Case Creation Data Flow Process

Power System

- NREL's new 240-bus WECC model
 - <u>https://www.nrel.gov/grid/test-case-repository.html</u>
 - Four areas: North, South, California, Mexico
 - 109 synchronous generators

Features of 13 Test Cases

Case	Key Features
1	Easy case to "warm up"
2	Observable source; resonance with local mode
3	Non-observable source in the exciter; resonance with system-wide inter-area mode
4	Non-observable source in the governor; resonance with system-wide inter-area mode
5	Variable frequency of FO
6	Non-observable source; resonance with local mode
7	Source in the exciter; strong interaction with controls

8	Observable source; re inter-area mode
9	2 sources: (1) FO sour wrong tuning of PSS in
10	2 sources of FO reson inter-area modes
11	Source of FO in Load
12	Rectangular shape of wide spectra of oscilla
13	Source of FO in HVDC

Key Features

Case

- Largest MW magnitude oscillation not in the source
- System disturbance obfuscating the FO onset

esonance with regional

irce in the governor, (2) in another generator

nating with local and

forced signal creating ations

14th Case & PMU Emulator

- To investigate sensitivity of participants' OSL algorithms to PMU filtering
 - No scoring for 14th test case
- FO with single source and 3 frequencies
- Scenarios
 - Mix P/M Class PMUs
 - All P Class PMUs
 - All M Class PMUs
- EPRI's PMU Emulator
 - Models PMU signal processing
 - Input: Simulation output of electromechanical or EMT simulators (e.g., TSAT or PSCAD)

PMU Signal Processing

Data Provided to Participants

- Model with system conditions <u>similar</u> to those used in simulations (PSS/E 1. format)
 - Important for use of Model-based and Machine Learning methods
- 2. For each of 13 cases: synthetic PMU measurements (TSAT simulation) output) (txt files)
 - a) Bus voltage magnitude
 - b) Bus voltage angle
 - c) Line current magnitude
 - d) Line current angle

Participants were required to:

- Identify the source of oscillation (Area, Bus, Equipment type, **Controller type**)
- Submit solution by using a provided template document

OSL Methods Used by 21 Contestants

Group #	Description
1	Energy-based methods (DEF, Transient energy, Dissipating potential, Energy supply on port)
2	Oscillation shape and magnitude (Phase relation a onset of oscillation, Magnitude of oscillation, Mode s
3	Machine Learning and Model-based analytics (Mill pattern recognition, Spectral estimate, Ensemble of analytical estimates, Graph neural network, Advance statistical learning)
4	Cross Power Spectra Density (energy-based approthe core)

at the shape)

ed

roach is

Summary of OSL Contest Results

Winners; close to 100% performance

Те	am	1/2	1/2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
Sc	ore	110	110	99	82	77	76	71	68	62	57	55	44	47	46	45	42	38	37	25	18	17
Used Method	1		Х	Х	Х	Х	Х	Х	Х	Х		Х									Х	
	2										Х	Х					Х			Х		
	3		Х	Х	Х								Х	Х	Х	Х		Х	Х			Х
	4	Х																				

Methods

- 1: Energy-based
- 2: Oscillation shape and magnitude
- 3: Machine Learning and Model-based analytic
- 4: Cross Power Spectra Density

Conclusions

Energy-based methods are most efficient

- 2: Oscillation shape and magnitude
- 3: Machine Learning and Model-based analytic
- 4: Cross Power Spectra Density

Details of implementation could be critical

17	18	19	20	21		
38	37	25	18	17		
		Ň	Х			
		Х				
Х	Х			Х		
~~						

PMU Class Sensitivity Test Results, Case 14

- PMU filtering for low frequency FO (<1Hz) is not expected to affect the results much
- Results of 11 participants (from 13 submitted) are NOT sensitive to PMU class
- Results of 2 participants differ depending on PMU class

	Number of Answe				
Method	All Correct	Some Correct	All Wrong		
1: Energy-based	5	1			
2: Oscillation shape and magnitude			1		
3: Machine Learning and Model-based analytic		1	4		
4: Cross Power Spectra Density	1				

A Lasting Resource

- Contest website: http://web.eecs.utk.edu/~kaisun/Oscillation/2021Contest/
- NREL's WECC 240-bus model: https://www.nrel.gov/grid/test-caserepository.html
- Test case library: http://web.eecs.utk.edu/~kaisun/Oscillation/
 - 2016 simulation cases based on WECC 179-bus model
 - Field-measured cases
 - IEEE-NASPI contest cases and data set-ups for simulation: http://web.eecs.utk.edu/~kaisun/Oscillation/contestcases.html

Please consider using the test case library when testing and **publishing**

17

Thank you

