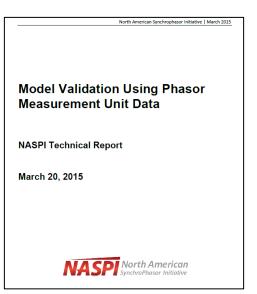


Engineering Analysis Task Team


Evangelos Farantatos (EPRI) – Co-Lead Matthew Rhodes (SRP) – Co-Lead

NASPI Virtual Meeting
October 6 2021

Advanced Model Validation & Calibration

- EATT White Paper
- Lead: Honggang Wang (GE)

Objective: Document industry advancements in model validation and calibration

NASPI Synchrophasor Technical Report

Outline & Progress

White Paper Link

- Drafted sections 2.1 and 3.1
- Collected material for section 3.2.2
- Conducted literature review for sections 2.2, 3.2.1, and 3.3

1	1 Introduction	1
	1.1 Motivation for Model Validation & Calibration	1
	1.2 Datasets and Data Requirements for Model Validation & Calibration	3
	1.3 Power System Model Validation Overview	4
	1.4 State-of-the-Art Methods and Tools for Model Validation & Calibration	6
	1.4.1 Power Plant Parameter Derivation(PPPD)	8
	1.4.2 Power Plant Model Validation Tool (PPMV)	10
	1.4.3 Power Plant Model Validation Simscape Design Solution	12
	1.4.4 Generator Model Validation (GMV)	13
	1.4.5 PhasorAnalytics Dynamic Model Validation & Calibration	15
	1.5 Limitations of Existing Methods and Desired Features of Advanced MVC	16
4	Advanced Model Validation	48
	2.1 Enhanced Model Validation Procedure	18
	2.2 Performance Metrics	21
3	3 Advanced Model Calibration	23
	3.1 Advanced Parameter Selection	23
	3.1.1 Trajectory Sensitivity Approach	23
	3.1.2 SVD Based Methods (GE)	24
	3.1.3 Similarity Based Methods (GE)	25
	3.2 Advanced Model Parameter Tuning	26
	3.2.1 Estimation Based Approach	26
	3.2.1.1 Kalman Filter (PNNL)	26
	3.2.1.2 Other	26
	3.2.2 Optimization Based Approach	26
•	3.2.2.1 Efficient Trust Region Approach (GE)	26
١,	3.2.2.2 Other	26
	3.3 Performance Validation Process and Metrics	27
4	Multiple Event Based Model Validation & Calibration	28
	4.1 Event Selection	28
	4.2 Aggregation of Performance Metrics Across Multiple Events	28
	4.3 Multiple Event Model Calibration	28
-	5 Conclusions	29
6	5 References	30

Section 2.1: Enhanced Model Validation

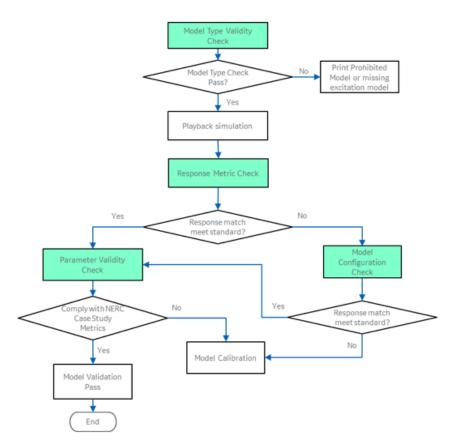


Fig. 6: Enhanced Model Validation Process from GE [32]

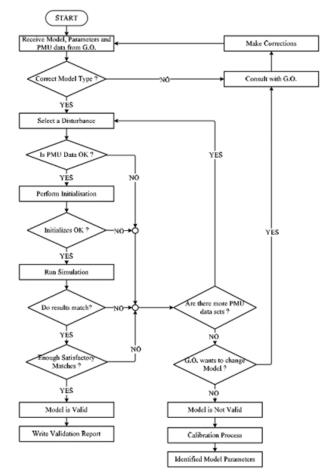


Fig. 8: Enhanced Model Validation Process from EPG [36]

- Presently, typically the user assesses the accuracy of the model validation
- Need for automation and robustness of model validation
 - Need for methods to verify validity of model and/or parameters
 - Need for comprehensive and interpretable performance metrics

Section 3.1: Advanced Parameter Selection

It is beneficial to identify sets of parameters with strong and linearly independent effects across qualitatively different disturbances, and to identify the "best" disturbances to use for model tuning

- 1. Trajectory Sensitivity Approach
- 2. SVD Based Methods
- 3. Similarity Based Methods

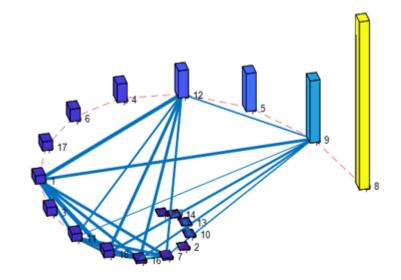


Fig. 5. Spiral graph showing magnitude and dependency of parameter sensitivity [32].