EDGE SOLUTION FOR ASSET HEALTH MONITORING USING SYNCHROPHASORS

EPG PRESENTATION FOR NASPI PANEL

October 5, 2021

OUTLINE

- Introduction
- Need for Asset Health Monitoring using Synchrophasors
- EPG's iTAM Platform
- AEP Example CCVT Failure Early Warning
- Use Cases
- Summary

ELECTRIC POWER GROUP (EPG) - INTRODUCTION

- Established in 2000 by an experienced team of electric utility executives
- EPG's team includes internationally acknowledged industry experts in phasor technology
- EPG portfolio of Synchrophasor Applications are designed to deliver value to Transmission Companies and System Operators for Asset Monitoring, Event Notification, and Situational Awareness
- EPG provides synchrophasor solutions to over 30 Grid Operators and Transmission Utilities in North America, Middle East and India

EPG SYNCHROPHASOR SOLUTIONS

NEED FOR ASSET HEALTH MONITORING USING SYNCHROPHASORS

AEP 765kV CCVT Failure Rate

~ 60 Reported Failures between 1982-2004

*T. Yang, Applying Substation Linear State Estimator to Instrument Transformer Health Monitoring and Management: Roadmap, CIGRE 2016.

INTELLIGENT TRANSMISSION ASSET MONITOR - *i*TAM

PROACTIVELY DETECTING PRECURSORS OF SUBSTATION EQUIPMENT FAILURE TO TAKE PREVENTIVE ACTION

ITAM VALUE PROPOSITION

- Instrument Transformers such as PTs, CTs, and CCVTs are not monitored in substations
- Failures of PTs, CTs, and CCVTs have led to damage and/or explosions at substations, compromising
 personnel safety, affecting reliability, and causing outages
- The majority of failures in instrument transformers are electrical
- Electrical signatures can be analyzed using Synchrophasor data in real-time to identify anomalies and provide early warning.
- iTAM utilizes synchrophasor data and advanced analytics to monitor electrical signatures and issue alarms and alerts in real-time for timely operator action

Improve Safety, Increase Reliability, Prevent Customer Outages, Reduce Cost

*i***TAM – PLATFORM FOR ASSET MONITORING**

- Platform: EPG developed *i*TAM to detect precursors to Equipment Failure
- Data: PMU (C37.118) and point-on-wave DFR data (COMTRADE)
- Equipment: Instrument Transformers (CT, PT, CCVT)
- Methodology: Advanced Data Driven Methods based on moving windows and dynamic thresholds, Substation Linear State Estimator – Model Based method
- Flexible: Central Location or in substations
- Field Tested: Deployed and validated at two AEP substations (138 kV & 765kV).
- Visualization: One Line Diagrams, Dashboards
- Automated Alarm Notifications
- Filter Out False Alarms: Designed to filter out false alarms by distinguishing instrument transformer failures from:
 - o System Events (Line Trip, Generation Trip, Transients)
 - Bad Data (Dropouts, Time Errors, Communication Issues)

ITAM EXAMPLE – CCVT FAILURE EVENT REPLAY

- CCVT Failure Event B Phase Voltage has anomalies/precursors before equipment failed
- Can be detected 5 hours prior to failure, System is tuned to capture these failures and provide early warning

AEP EXAMPLES – CCVT FAILURE CAUSED 765KV LINE TRIP AND TRANSFORMER TRIP

Precursors Observed ~ 5 Hours Ahead

Precursors Observed ~ 5 Days Ahead

Source: Qiushi Wang et. al, 'CCVT Modelling Failure Mode Investigation and Impact on Relay Operation', CIGRE-US, 2020.

ITAM CAN DETECT DIFFERENT TYPES OF FAILURES *CCVT FAILURES THAT CAN BE DETECTED*

CCVT Failure type	Detected with physical inspection?	Detected by iTAM?
Loose fuse connections in CCVT safety switch	\checkmark	
Capacitor failure in high voltage stack of CCVT	×	
Capacitor failure in low voltage grounding stack	×	\checkmark
Failure in voltage transformer and series reactor in CCVT	×	\checkmark
Filter circuit failure and spark gaps	×	
Ferroresonance suppression circuit failure	×	

TYPES OF FAILURES IN CT'S AND PT'S THAT CAN BE DETECTED

Loose or corroded connections Open CT secondary Turn-to-turns shortage within same coil × Turn-to-ground shortage ×	-	Detected by iTAM?		CT Failure type
Open CT secondary ✓ ✓ Turn-to-turns shortage within same coil × ✓ Turn-to-ground shortage × ✓	/	\checkmark	\checkmark	Polarity error
Turn-to-turns shortage within same coil X Turn-to-ground shortage X	/	\checkmark	\checkmark	Loose or corroded connections
Turn-to-ground shortage X	1	\checkmark	\checkmark	Open CT secondary
	/	\checkmark	×	Turn-to-turns shortage within same coil
Turn-to-turn shortage between different coils	1	\checkmark	×	Turn-to-ground shortage
	/	\checkmark	×	Turn-to-turn shortage between different coils
Ratio setting error	/ /	\checkmark	×	Ratio setting error
Saturation of CT core and dielectric breakdown	()	$\sqrt{}$	×	Saturation of CT core and dielectric breakdown

PT Failure type	Detected with physical inspection?	Detected by iTAM?
Blown Fuse	\checkmark	\checkmark
Loose connections	\checkmark	\checkmark
Primary winding issues	×	\checkmark
Secondary winding issues	×	√ /

JAN 11, 2019 - EASTERN INTERCONNECTION OSCILLATIONS

NORTH AMERICAN ELECTRIC RELIABILITY CORPORATION

NERC findings point to wiring issue in PT that triggered Interconnection Wide Oscillations

 Important to identify oscillations and locate source

•

 Also important to identify and address root-cause to prevent system wide impact

Source: NERC, Oscillation Analysis Webinar, September 13, 2019

Forced Oscillation Source

- Steam turbine at combined cycle plant
- Power-load imbalance (PLI) controls
 - Failed voltage input to feedback
 - Measured P_{gen} reading 2/3 of actual
 - Perceived power-load imbalance
- PLI trigger shuts intercept valves
- 4 second timer to reopen valves
- Imbalance eliminated and valves reopen
- ... and repeat and repeat
- Different voltage measurements for relaying and controls/metering
 - Hence no relay operation
- Plant manually tripped by operator
- Upon inspection, failed wiring in PT cabinet
- Damaged intercept valves
 - Replacement needed
 - Unit off-line for multiple weeks

USE-CASE EXAMPLE

From NERC Lesson Learned Report

- NERC & NPCC Event Analysis Team Published a Report on April 14, 2020
- CCVT Failure Event caused a single-phase-to-ground fault
- CCVT had exhibited low, out-of-tolerance output prior to the event.
- Event caused communication equipment failure due to transient
- Primary and Back-up relay protection failed
- Fault continued for over 4 minutes causing significant damage

"Monitoring the output for "stair steps" can warn of developing failure"

https://www.nerc.com/pa/rrm/ea/Pages/Lessons-Learned.aspx

Electric Power Group

© ELECTRIC POWER GROUP 2021. ALL RIGHTS RESERVED

Failed C Phase of CCVT

14

INSTRUMENT TRANSFORMER FAILURE EVENTS IN AUSTRALIA

- March 3, 2017 CCVT Failure Source: AEMO Incident report, 10 March 2017
 - Explosive Failure of a CCVT in 275 kV Switchyard
 - Caused series of faults and tripping of Busbar and generator
 - Damage to generator disconnector
 - Loss of 610 MW generation across 5 units
 - CCVT was tested and physically/visually inspected 38 days before failure
- February 13, 2017 CCVT Failure Source: AEMO Incident report, 26 July 2017
 - Explosive Failure of a CCVT associated with 275kV line
 - Caused single phase fault that developed into multiphase fault and tripping line
 - Loss of 475 MW of load
- October 3, 2013 CCVT Circuit Failure Source: AEMO Incident report, 16 December 2013
 - Loose Fuse on secondary circuit of 330 kV line CCV
 - Caused overvoltage and line outage
- November 20, 2015 CT Failure Source: AEMO Incident report, August 2016
 - Explosive Failure of Current Transformer (CT) at 330 kV
 - 330 kV Line Outage
 - 125 MW customer load loss

EXAMPLES OF ITAM DETECTION CAPABILITIES

LOOSE CONNECTIONS, WINDING ISSUES, BLOWN FUSES, ETC.

- 2) Bogdan Kasztenny and Ian Stevens, "Monitoring Ageing CCVTs Practical Solutions with Modern Relays to Avoid Catastrophic Failures", March 2007
- 3) David Shipp and Thomas Dionise, IEEE Tutorial, "Switching Transients, Transformer Failures, Practical Solutions", Feb 2016

ONE LINE DIAGRAMS AND VISUALIZATION DISPLAYS

Alarms in real time displayed on one-line Diagrams

Electric Power Group

AST CENTRAL VAVEN VM - EAST CENTRAL VEVEN VM - EAST CENTRAL VCVPM V

16:02:45

REPORTING AND ALARMING – EMAIL NOTIFICATIONS

SUMMARY

- iTAM Synchrophasor Edge Solution for Asset Health Monitoring
- Complements Utility Asset Monitoring Systems
- Can be deployed at Individual Substations with alarms/results sent to other systems
- Designed to monitor instrument transformers (Current transformers, Voltage transformers, CCVT's) that are critical to substation protection
- Detects precursors to failure and issues alarms and email notifications to Asset Managers to take pro-active action
- Substation equipment failures are costly iTAM can prevent outages, reduce equipment replacement cost, promote safety

THANK YOU

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

<u>Electric Power Group - Synchrophasor Solutions</u>

