FOA 1861 FINAL PROJECT BRIEFING BIG DATA ANALYSIS OF SYNCHROPHASOR DATA

Combinatorial Evaluation of Physical Feature Engineering, Classical Machine Learning, and Deep Learning Models for Synchrophasor Data at Scale

Dr. Mohini Bariya

PingThings mohini@pingthings.io October 5, 2021

Project Partners

Outline

- Background
- Experimental Results
 - Statistical & ML Pipeline
 - Assessment of Datasets
 - Validation Results
- Technical Accomplishments
- Value of Work
- Readiness for Commercialization
- Readiness for ML & BD Analytics
- Lessons Learned and Next Steps

Background - The Platform

Background - The Platform

Background - The Platform

Background - Our Approach

Aims

- Identify & classify events (within and outside utility logs)
- Identify & classify precursors
- Extract event signatures
- Discover seasonal & weather patterns

Strategy

 Broad survey & assessment of algorithms for these tasks.

Significance

- Development of broadly useful tooling for pain free analytics pipeline.
- Algorithm discoveries

Statistical & ML Pipeline

Dataset Assessment

Measurements

- Missing measurements
- Bad values
- Mislabeling

Event Logs

- Event times inaccurate
- No spatial information topology or event location

Pertinent PMU Identification

Validation Results

1.0

Binary, Heuristic

Human	units →																								U	rC+0
Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb
2015						2	016						1					20	17						2018	3

Augmenting Logs - Labelling App

Data Exploration

Multiresolution Plotter

Data Exploration

Jupyter Notebooks

Power factor at PMU 4

In [142]:	<pre># Get streams uuids = db.query("SELECT collection, name FROM streams WHERE collection like 'sunshine/PMU4'") names = [row["collection"]+"/"+row["name"] for row in uuids] streams = db.streams(*names) print(names)</pre>											
	['sunshine/PMU4/C1MAG', 'sunshine/PMU4/L1MAG', 'sunshine/PMU4/C2ANG', 'sunshine/PMU4/C2MAG', 'sunshine/PMU4/L3MAG', 'sunshine/PMU4/L2MAG', 'sunshine/PMU4/C3MAG', 'sunshine/PMU4/L2ANG', 'sunshine/PMU4/C1ANG', 'sunshine/PMU4/L1ANG', 's unshine/PMU4/L3ANG', 'sunshine/PMU4/C3ANG', 'sunshine/PMU4/LSTATE']											
In [143]:	<pre>vang_stream = streams[9]; iang_stream = streams[8]; #t0 = ns_to_datetime(vang_stream.earliest()[0].time) + datetime.timedelta(days=10); # start on monday, july 27, 2015 t0 = datetime.datetime(2015, 7, 27) + datetime.timedelta(hours=7);</pre>											
In [144]:	<pre>pf_pmu4 = powerfactor_weeks(vang_stream = vang_stream, iang_stream = iang_stream, time = t0)</pre>											
	A Jupyter widget could not be displayed because the widget state could not be found. This could happen if the kernel storing the widget is no longer available, or if the widget state was not saved in the notebook. You may be able to create the widget by running the appropriate cells.											
In [145]:	<pre>pfmed_pmu4 = plot_hourly_pf(pf_pmu4); plt.title('Power Factor at PMU 4', fontsize=20); plt.tight_layout(); plt.savefig('pf_pmu4', dpi=200);</pre>											
	Power Factor at PMU 4											
	Median											
	086- 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20											
	M TU W Th F S Su											
	Pinginings $-$											
500												

Model Outputs to Streams

Model Outputs to Streams

Model Outputs to Streams

Fri Sep 2, 2016

A enormous need for results exploration

Value of Work

Tools

- <u>In 5 years</u>: Operators & engineers collaborate with ever stronger ML models.
- <u>Many use cases!</u> Broadly useful tools that can be tuned & applied to various applications & datasets.

Data

- <u>Sharing anonymized data is critical!</u> This dataset makes the impossible, possible.
- Real-world data from multiple contexts enables generalizable, efficacious algorithms.

Readiness for Commercialization

Ready for use:

- Tools for most stages of the analysis & design cycle.
- Refinement is always possible, but may best be done on the job.

Work with you on application to specific use cases.

Being Ready for ML & BD Analytics

Difficulties

- More domain expertise can help with feature selection.
- Need more standardized assessment.
- Labels have poor temporal specificity & no spatial information.
- What is normal? More work to distinguish significant from inconsequential.

Recommendations

- Prepare data for ML: More measurements, define & save <u>standardized records.</u>
 - Records on how problem was discovered (measurements, call, manual)
 - Which streams revealed an issue?

Lessons Learned and Next Steps

Dataset should be made open access for further work and *accessible*.

For example, in the NI4AI project: <u>https://ni4ai.org/</u>

Next steps

- Greater focus on algorithmic transparency and visualization.
- Enabling feedback for learning on the job.

Extra Slides

Extra slides after this point.

Diversity of Model Types

Model Type	Description						
CatBoost	Model consisting of ensemble of weaker						
Catboost	classifiers, usually decision trees.						
Decision	Non-parametric model consisting of						
Tree	layered, simple decision rules.						
	Fits a number of randomized decision trees						
Extra Troos	on various sub-samples of the dataset.						
Extra frees	Uses averaging to improve the predictive						
	accuracy and control over-fitting.						
Gaussian	Fits Gaussian distribution to data						
Naive Bayes	using Bayesian methods.						
K Neighbors	Non-parametric method classifies new						
IX INEIGHDOIS	sample based on k nearest training samples.						
LCBM	Model consisting of ensemble of weaker						
LGDM	classifiers, usually decision trees.						
MLP	Multi-layer perceptron, a type of						
1/11/1	neural network.						
MLP Deep	A deep multi-layer perceptron.						
Random Forest	Fits an ensemble of decision trees,						
Random Forest	which vote to produce a single classification.						
	Fits a linear classifier using stochastic						
SGD with hinge	gradient descent.						
	The optimized loss function is the hinge loss.						
SGD with log	Above, but the optimized loss						
SGD with log	function is the log loss.						
SGD with	Above, but the optimized loss						
modified Huber	function is the modified Huber loss.						

Diversity of Features

Feature Family	Feature Types	Number of Features				
	Aggregated Autocorrelation	186				
Auto-regressive	AR Coefficient	186				
	Aggregated Linear Trend	186				
	Quantiles	207				
Quantiles	Change Quantiles	207				
	Coefficient of Variation	207				
Continuous Wavelet	CWT using the Ricker	180				
Transform (CWT)	aka Mexican Hat Wavelet	100				
Fast Fourier	FFT	1200				
Transform (FFT)	LL T	1200				
Spectrogram	Spectrogram	405				

Publications

INSERT ORG LOGO (Optional)

